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This research introduces an innovative method of Artificial Intelligence (AI) for 

improving the detection and classification of kidney diseases using CT images. The 

proposed method includes image pre-processing to remove artifacts, noise, and other 

image quality issues that can affect the accuracy of diagnosis.  Then the area of interest in 

each image is segmented using Fractional Darwinian particle swarm optimization. 

Different features including Local Binary Pattern, Hu Moments, and Gray level zone 

length matrix (GLZLM) are extracted and fused using Canonical Correlation Analysis 

(CCA) and reduced using Two Dimensional Principal Component Analysis (2D- PCA) to 

maintain only dominant features. A two-level classification approach is carried out to 

provide both fast and detailed diagnosis using both Binary Support Vector Machine 

(BSVM) and Convolutional Neural Network (CNN) in sequence. BSVM is used to 

initially discriminate between normal and abnormal kidney states. Afterwards, the 

detected abnormal kidney images are classified using CNN to different kidney diseases 

such as stones, cysts, and tumors. This approach aims to expedite the diagnostic 

procedure while also enhancing the efficiency and accuracy of classifying kidney disease 

in the clinical practice. Obtained results validate the efficiency of our proposed in terms 

of achieved accuracy when compared to alternative cutting-edge methods. 
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1. INTRODUCTION 

Computed tomography (CT) gives extensive 

information about the kidneys’ internal anatomy for the 

diagnosis and management of renal diseases. Kidney 

diseases, such as kidney stones, cysts, and tumors, are 

serious health issues that impact millions of people 

worldwide. However, radiologists’ manual interpretation 

of CT scans takes time and is subjective, which can lead 

to diagnostic mistakes. As a result, automated 

approaches are needed to detect and classify renal 

diseases in CT scans . 

Artificial intelligence (AI) offers a multitude of tools 

to improve our lives and has had substantial effects in 

several domains, such as the medical industry [1]. AI has 

greatly assisted in the prompt detection, diagnosis, and 

treatment of diseases in the medical domain. Currently, 

kidney illness stands as a prominent worldwide health 

concern. Although there is a high prevalence of people 

with renal disease, diagnosing and treating this condition 

continues to be difficult. Currently, there are AI-based 

diagnostic methods that take into account individual 

situations and are capable of making appropriate 

conclusions. These advancements have great potential 

for making considerable progress in the field of renal 

disease diagnosis [2, 3]. 

Both traditional machine learning approaches and 

deep learning techniques have been recently utilized for 

the identification and categorization of kidney diseases 

in CT images. Traditional machine learning approaches, 

such as the support vector machine (SVM), have been 

used to classify kidney stones [4] and malignancies [5], 

resulting in high accuracy. However, these approaches 

cannot take full advantage of the abundant information 

in CT scans. On the other hand, Convolutional Neural 

Networks (CNNs) have been proven to be an efficient 
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for medical image processing applications, including the 

identification and categorization of kidney diseases in 

CT images [6, 7]. CNNs may learn hierarchical 

characteristics from images leading to enhanced 

performance. Nevertheless, CNNs are characterized by 

their high computing demands and may not be appropriate 

in situations when quick decision-making is necessary. 

To overcome these constraints, in this research, we 

present a hybrid classifier built of BSVM-CNN for the 

speedy and exact identification and categorization of 

kidney diseases in CT images. The suggested approach 

utilizes a two-step classification procedure: in the initial 

stage, a binary support vector machine (BSVM) is 

employed to swiftly determine if kidney images are 

normal or infected. If the image is detected as having 

diseases, then it is transmitted to the second stage 

judgment, which applies CNN, to differentiate 

between different kidney diseases (stones, cysts, and 

tumors). The suggested technique seeks towards 

improving the accuracy and efficiency of kidney illness 

identification and categorization in CT images, hence 

facilitating early diagnosis and treatment of renal diseases. 

Our contributions to obtain the best performance in 

respect to the lowest time and fastest decision might be 

stated as follows: 

1- A robust approach for image segmentation using 

Fractional Darwinian Particle Swarm Optimization 

(FDPSO) is proposed. Fractional calculus optimizes 

the performance by adjusting the convergence rate, 

delivers more accurate segmentation results, and is 

more resilient to noise than classic thresholding 

approaches . 

2- Multiple characteristics for texture and form analysis 

such as Local Binary Patterns (LBP), GLZLM, and Hu 

Moments are extracted and fused together using 

Canonical Correlation Analysis (CCA .) 

3- Dimensionality reduction of the feature space is 

achieved using Two- Dimensional Principal 

Component Analysis (2DPCA) to enhance the 

performance of the classifier by allowing for easier 

visualization and potentially capturing the most 

important information in the data . 

4- Improved efficiency and accuracy of kidney disease 

detection and classification supports clinicians in their 

clinical practice using a hybrid classifier approach that 

uses a binary Support Vector Machine (SVM) for fast 

decision-making and a Convolutional Neural Network 

(CNN) for further classification . 

5- A detailed examination of the suggested strategy on a 

large data set of CT scans, revealing its superiority 

over current methods in terms of accuracy, sensitivity, 

and specificity . 

The remaining part of the paper is arranged as 

follows. Section 2 examines the relevant work to set the 

basis for introducing our intended study. Section 3 

discusses our intended work in depth. Section 4 outlines 

the experimental setup while the lengthy experiments 

and the findings produced are presented in section 5. 

Section 6 draws conclusions . 

2. RELATED WORK 

Recent advancements in computer vision have 

propelled AI-based algorithms to the forefront of kidney 

disease diagnosis. This growing interest is driven by 

their effectiveness in detecting various conditions. 

Researchers have developed numerous approaches for 

kidney disease diagnosis using machine learning (ML) 

and convolutional neural networks (CNNs .) 

In [8], the authors explored ML techniques to create 

effective tools for predicting Chronic Kidney Disease 

(CKD). Their approach includes class balancing to 

address the uneven distribution of instances between 

classes, ranking of features and analysis, and the training 

of several ML models evaluated using various 

performance metrics. The results revealed that the 

Rotation Forest. 

(RotF) model excelled, getting an Area Under the 

Curve (AUC) of 100%, and illustrating precision, recall, 

F-measure, and accuracy rates of 99.2%. 

In [9] the authors applied eight different ML 

algorithms for building a system for the rapid diagnosis 

of CKD. The algorithms used include Extra Trees 

Classifier (EXT), K-Nearest Neighbors (KNN), 

AdaBoost (ADB), Extreme Gradient Boosting (XGB), 

Gradient Boosting (GB), Gaussian Naïve Bayes (GNB), 

Decision Tree (DT), and Random Forest (RF). Among 

these, KNN and Extra Trees classifiers demonstrated the 

highest accuracy, at 99% and 98%, respectively. 

In [10], the authors proposed a method for kidney 

problem detection using smartphone images from 

ultrasound scanners. The approach employs the Viola-

Jones method for initial detection, followed by texture 

feature extraction and classification with a Support 

Vector Machine (SVM). This method achieved an 

accuracy of 90.91 



  70                                                                                            Wessam S. ElAraby et al. 

 

Arab J. Nucl. Sci. Appl., Vol. 57, 4, (2024)   

 

Moreover, [11] presented an algorithm for detecting 

Nephrolithiasis using KNN and SVM techniques. The 

study enhances image quality through median filtering and 

unsharp masking, with Gaussian and Median filters used 

for further processing. Erosion and dilation operations, 

along with entropy-based segmentation, are employed to 

define the region of interest. The combination   of KNN and 

SVM classifiers resulted in an accuracy of 85%. 

In [12], a pre-processing approach involving grey-scale 

conversion, region- of-interest definition, and feature 

extraction using a multi-scale wavelet-based Gabor method 

is utilized. Optimization is performed using Cuckoo Search 

(CS), while classification is carried out utilizing an 

Artificial Neural Network (ANN). This approach produced 

a classification accuracy of 94%. 

Furthermore, [13] defined three regions of interest 

(ROIs) in kidney ultra- sound images: the cortex, the 

boundary between the cortex and medulla, and the medulla. 

The study used the Gray Level Co-occurrence Matrix 

(GLCM) technique to extract 57 parameters from these 

ROIs, augmented with kidney size information, totaling 58 

features. An ANN model with 58 input parameters, 10 

layers that are hidden, and 3 layers of output (representing 

normal, mild, moderate, and severe CKD) achieved a 

classification rate of 95.4%. 

In [14], a predictive approach for CKD status is 

presented, incorporating data pre-processing, handling of 

missing values, feature extraction, and data aggregation. 

The study applies several ML techniques, including logistic 

regression (LR), DT classification, and KNN, with LR 

achieving the highest accuracy of approximately 97%. 

Lastly, [15] outlined a four-phase approach to kidney 

stone detection. Challenges such as speckle noise and poor 

contrast are addressed through appropriate image 

processing techniques. Gaussian filtering is used for noise 

reduction, followed by Canny edge detection for 

segmentation. The segmented image is subsequently 

analyzed using wavelet transforms and CNN classification 

to identify kidney stones. 

3 PROPOSED WORK 

Fig. 1 shows the flowchart of our proposed Kidney 

Nephrolithiasis detection using Binary and multi class 

classification techniques: First, Binary classification between 

normal and abnormal kidney images is made using binary 

SVM, then, multi class classification among different kidney 

diseases is made using CNN. The next subsections explain in 

detail each step in our proposed approach . 

3.1 Image Pre-processing 

CT kidney medical images usually contain artifacts, 

noise, and other image quality issues that can affect the 

accuracy of diagnosis and analysis. Therefore, image 

pre-processing is an essential step that is being used to 

enhance the quality of these images by eliminating such 

artifacts, reducing noise, and improving contrast. 

Samples of the enhanced images data set are shown in 

Fig. 2 . 

The implementation of various image pre-processing 

techniques plays a crucial role in significantly boosting 

the accuracy, dependability, and overall quality of 

medical diagnoses and analyses. This, in turn, leads to 

improved patient outcomes, ensuring that individuals 

receive more effective and precise medical care. The 

process of preparing computed tomography (CT) kidney 

image data sets for subsequent analysis involves a series 

of essential operations and steps. These pre-processing 

steps are designed to optimize the image quality and 

make the data more suitable for analysis. Some of these 

important pre-processing techniques include the 

following operations: 

1. Noise Reduction: CT images often suffer from high 

noise levels due to factors like scanner hardware, 

patient motion, or radiation dose, which can com- 

promise image quality and analytical accuracy. 

Employing noise reduction algorithms, such as 

Gaussian or median filters, can enhance image 

quality by smoothing the image through averaging 

pixel values in the surrounding area, thus mitigating 

random noise . 

2. Contrast Enhancement: CT images often exhibit poor 

contrast, complicating the differentiation of various 

tissue types. Techniques like histogram equalization 

and adaptive histogram equalization can enhance this 

contrast. Histogram equalization redistributes pixel 

intensities for a uniform distribution, while adaptive 

histogram equalization applies this locally in smaller 

regions. These methods improve the visibility of 

kidney structures . 

3. CT images often contain irrelevant elements, such as 

the scanner bed or extraneous body parts. Cropping 

these images to focus on the area of interest reduces 

computational load and improves model accuracy. 

Resizing to a standard resolution further standardizes 

the data, making it more suitable for training machine 

learning algorithms that require consistent image 

sizes. 
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4. Normalization is a technique that ensures a consistent 

distribution of image intensities, which is beneficial 

for machine learning algorithms that assume specific 

data properties, like a Gaussian distribution. During 

this process, the mean pixel value is subtracted from 

each pixel then divided by the standard deviation, 

resulting in pixel values with a mean of zero and a 

standard deviation of one. 

 

 

Fig. (1): Flowchart for the proposed Kidney Nephrolithiasis Detection approach 



  72                                                                                            Wessam S. ElAraby et al. 

 

Arab J. Nucl. Sci. Appl., Vol. 57, 4, (2024)   

 

 

Fig. (2): Sample of the images data set after enhancements: (a) Normal, (b) Kidney Stone, and (c) Tumor 

 

Table (1): Number of new instances generated after data augmentation step for each class 
 

 
Before Data 

Augmentation 

After Data 

Augmentation 

New Instances 

Generated 

Cyst 3709 10527 6818 

Normal 5077 14308 9231 

Stone 1377 3885 2508 

Tumor 2283 6443 4160 

Total 12446 35163 22717 

 

3.2 Image Augmentation 

Image augmentation for X-ray kidney images 

includes transformations like rotation, flipping, scaling, 

cropping, and brightness adjustments to expand the data 

set. This process improves the performance and 

robustness of machine learning models, enabling better 

generalization to real-world variations. Here are some 

data augmentation techniques used with the CT kidney 

data set: 

1. Rotation: By rotating the image at different angles, 

we can create new instances of the cyst, stone, 

normal, and tumor classes . 

2. Flipping: Flipping the image horizontally or 

vertically can also help create new instances of the 

classes. 

3. Scaling: By scaling the image, we can create images 

of different sizes, which can help create new 

instances of the minority classes. 

4. Adding noise: Adding noise to the image can create 

new instances of the classes and can also help in 

making the model more robust to noise in the original 

images. 

5. Elastic deformation: By applying elastic deformation 

to the image, we can create new instances of the 

classes that are similar to the original instances but 

slightly different . 

6. Contrast adjustment: Adjusting the contrast of the 

image can also help create new instances of the 

classes. 

Data augmentation should be applied carefully, and 

the augmented data set must be validated for its 

effectiveness in enhancing model performance. When 

handling medical image data sets, it is crucial to consult 

a medical professional to ensure that augmentation 

techniques do not compromise the clinical interpretation 

of the images. Table 1 shows that data augmentation has 

significantly increased the number of instances in each 

class, aiding in data set balance and improving model 

performance on minority classes. The quantity of new 

instances generated varies based on the data 

augmentation techniques and their parameters. 

Furthermore, the augmented data set must be carefully 

validated to confirm that it has enhanced the model’s 

performance . 

3.3 Image segmentation 

CT kidney image segmentation serves a significant 

role in the analysis of medical images by isolating 

kidney regions from adjacent tissues. Traditionally, 

thresholding has been a popular technique for 

segmentation due to its simplicity and effectiveness. 

However, this method can be sensitive to noise and may 
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not always yield precise results. To address these 

limitations, we pro- pose using Fractional Darwinian 

Particle Swarm Optimization (FDPSO) for segmentation, 

which has shown robustness in earlier studies  [16–18 .]  

FDPSO is an optimization algorithm inspired by 

biological systems, specifically designed for automatic 

segmentation of kidney regions in CT images. It is a 

variation of the Particle Swarm Optimization (PSO) 

algorithm, which simulates the collective behavior of 

bird flocks or insect swarms. In FDPSO [19, 20], 

segmentation is achieved by dividing an image into 

distinct regions based on pixel value similarity . 

The FDPSO algorithm operates by leveraging a 

swarm of particles to seek out the solution space. Each 

particle represents a possible segmentation solution, and 

its position and velocity are adjusted based on both its 

own best position and the best position discovered by the 

swarm [21]. A distinctive feature of FDPSO is the 

inclusion of a fractional-order derivative term in the 

velocity update equation, which improves the 

algorithm’s convergence speed and accuracy [17, 18]. 

The segmentation process using FDPSO is summarized 

in the following steps : 

1. Defining the objective function: The objective 

function measures the seg- mentation algorithm’s 

ability to segment renal areas. FODPSO’s objective 

function is the weighted sum of the Dice similarity 

coefficient (DSC) and the Hausdorff distance (HD). 

The HD measures the greatest distance between two 

segments, whereas the DSC measures the overlap 

between the expected and ground truth 

segmentations. 

2. Initializing the FODPSO algorithm: FODPSO is a 

population-based optimization method that models 

particle swarm behavior. The technique begins by 

randomly initializing a population of particles, with 

each particle representing a potential solution to the 

segmentation issue . 

3. Evaluating particle fitness: Each particle’s fitness is 

determined using the objective function. The 

particle’s fitness dictates where it appears in the 

search space . 

4. Updating the particles: The particles are updated 

based on their position and velocity. The particle 

position represents its current solution to the seg- 

mentation problem, while its velocity represents its 

direction of movement in the search space. The 

updated rules are based on the Darwinian theory of 

evolution and fractional calculus. 

5. Termination: When a stopping criterion is fulfilled, 

such as a maxi number of iterations or a mini 

fitness improvement, the FODPSO algorithm 

terminates. 

6. Post-processing: The final segmentation result may 

need to be post- processed to remove any small or 

isolated regions and to smooth the boundaries of the 

kidney regions. Techniques such as morphological 

operations and Gaussian smoothing can be used for 

post-processing . 

Overall, FODPSO is a powerful optimization algorithm 

that can automatically segment kidney regions in CT 

images. There are several advantages of using FODPSO 

for CT kidney image segmentation over other traditional 

segmentation techniques   [22 ,23:]  

1. FODPSO is an optimization algorithm that can 

automatically search for the optimal segmentation 

solution in the search space. This means that it does 

not require manual intervention or parameter tuning, 

which can save time and improve the reproducibility 

of the results. 

2. FODPSO uses fractional calculus, which is a 

generalization of traditional calculus that can handle 

non-integer orders of differentiation and integration. 

This allows FODPSO to model more complex 

behaviors and relationships in the image data, which 

can enhance the accuracy of the segmentation . 

3. FODPSO is based on the Darwinian theory of 

evolution, which simulates natural selection and 

survival of the fittest. This means that FODPSO can 

adapt to changes in the image data and converge to 

the optimal solution robustly and efficiently. 

4. FODPSO can be used to optimize multiple objectives 

simultaneously, such as segmentation accuracy, 

smoothness, and boundary adherence. This can result 

in more robust and clinically relevant segmentation 

results that better reflect the underlying anatomy and 

physiology . 

5. FODPSO has been shown to achieve high accuracy 

in CT kidney image segmentation. For example, 

FODPSO achieved a mean Dice similarity coefficient 

(DSC) of 0.946 and a mean Hausdorff distance (HD) 

of 8.03 mm in segmenting the kidney regions from 

CT images . 

Overall, FODPSO is a powerful and flexible 

optimization algorithm that can achieve high accuracy in 

CT kidney image segmentation. Fig. 3 shows samples of 

the segmented images using FODPSO 
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Fig. (3): Samples of the segmented images using FODPSO: (a) Cyst, (b) Kidney Stone, and (c) Tumor 

 

4.1 Feature Extraction 

Local Binary Patterns (LBP), Gray level zone length 

matrix (GLZLM), and   Hu Moments are common 

features that have been commonly used for texture and 

shape analysis respectively [24]. In the proposed 

algorithm, we used a com- bination of LBP, Gray level 

zone length matrix (GLZLM), and Hu Moments along 

with statistical features as feature descriptors. 

3.4.1 Local Binary Pattern 

Local Binary Pattern (LBP) is undeniably one of the 

most prevalent feature descriptors employed in image 

recognition. LBP is particularly effective in capturing 

texture details. In the context of gray-scale CT kidney 

images, LBP can extract information about the texture of 

local neighborhoods [24]. 

The primary advantages of LBP are its computational 

efficiency and robustness to changes in lighting 

conditions. LBP operates by evaluating the binary 

relationships between each pixel in the CT kidney image 

and its neigh- boring pixels. These relationships are 

encoded into an LBP code according to predefined rules, 

making it a straightforward yet powerful method for 

texture analysis. 

The pixels imagery gp(p = 0, ...., 7) are labeled by 

thresholding a 3 by 3 neighborhood of each pixel, with 

the center pixel value fc and a binary number f (gp − gc) 

as in Equation (1): 
 

𝑓(𝑔𝑝 − 𝑔𝑐) =  {
1 ∶  𝑔𝑝 ≥ 𝑔𝑐

  0 ∶  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (1) 

Then, the LBP is calculated as in Equation (2) by 

assigning a binomial factor 2p for each f (gp − gc): 
 

𝐿𝐵𝑃 =  ∑ 𝑓(𝑔𝑝 − 𝑔𝑐)2
𝑝7

𝑝=0                   (2) 

The LBP histogram is often used to depict the 

statistical distribution of LBP codes. In this scenario, all 

pixel LBP codes for an input picture are gathered as a 

texture description into a histogram, which is 
 

𝐿𝐵𝑃𝐻(𝑖)  =  ∑ 𝛿𝑖 , 𝐿𝐵𝑃(𝑥, 𝑦)     𝑖 = 0, . . . , 27
𝑥,𝑦    (3) 

 

where the Kroneck product function is denoted by 

delta(.). To get local texture information, the LBP 

operator extracts a wide variety of texture primitives, 

usually aggregated into a histogram across an area, 

including corner, edge, line end, and spot. The CT 

kidney image is segmented into many areas, and the LBP 

feature distributions are then extracted and concatenated 

to create an enhanced feature vector that may be utilized 

as a texture descriptor. LBP is a resilient descriptor that 

can withstand rotation, scaling, background noise, and 

lighting variations. 

3.4.2 Canonical Correlation Analysis 

Canonical Correlation Analysis (CCA) is a statistical 

technique that is used to find linear combinations of 

two or more sets of variables that have a maximum 

correlation with each other. In other words, CCA is a 

method for the measurement of the linear relationship 

between two multidimensional variables. In the 

context of feature fusion between Local Binary 

Patterns (LBP), Gray Level Zone Length Matrix 

(GLZLM), and Hu Moments, CCA can be used to 

combine the information contained in these three 

feature sets into a single set of features with improved 

discriminatory power. The output of CCA is a set of 

new features that are linear combinations of the input 

features and capture the maximum amount of 

information shared between the different feature sets. 

These new features can then be used in pattern 

recognition and classification tasks  . 

For two random sets f rm1 ×n1 and g rm2 ×n2, a 

pair of transforma-tions u and v termed canonical 

transformations are discovered such that the 

correlation between f′   = utf and g′   = vtg is 
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maximized. The function to be maximized is specified 

in Equation    (4 : 
 

𝑟 =  
𝐸[𝑓`,𝑔`]

√𝐸[𝑓`2]𝐸[𝑔`2]
 =  

𝐸[𝑢𝑡𝑓,𝑣𝑡𝑔]

√𝐸[𝑢𝑡𝑓 𝑓𝑡 𝑢]𝐸[𝑣𝑡𝑔 𝑔𝑡 𝑣]
 =  

𝑢𝑡𝐶𝑓𝑔𝑣

√𝑢𝑡𝐶𝑓𝑓 𝑢 𝑣𝑡 𝐶𝑔𝑔 𝑣
     (4) 

The maximum of r with respect to u and v is the 

maximum canonical correlation. 

𝑟 =  𝑚𝑎𝑥𝑢,𝑣  
𝑢𝑡𝐶𝑓𝑔𝑣

√𝑢𝑡𝐶𝑓𝑓 𝑢 𝑣𝑡 𝐶𝑔𝑔 𝑣
            (5) 

r is the canonical correlation. Where E[h] is the 

expectation of h and Cff, 

Cfg and Cgg are covariance matrices 

3.4.3  Feature reduction using Two-Dimensional 

Principal Component Analysis (2DPCA) 

Principal Components Analysis (PCA) identifies data 

patterns and visualizes similarities and contrasts [26]. It 

is regarded as a good data analysis approach capable of 

extracting data patterns from high-dimensional data 

when the use of graphical representation is not possible. 

The main benefit of PCA is that it compresses data by 

lowering the number of dimensions while preserving 

significant information. 

For evaluating two-dimensional data, the Two 

Dimensional PCA (2DPCA) technique outperforms one-

dimensional PCA. 2DPCA is more effective in 

extracting prominent traits, resulting in a higher 

identification rate. 2DPCA analyzes data in two 

dimensions while preserving the spatial temporal 

relationship between surrounding feature components. 

The 2DPCA’s computation stages for a data set are as 

follows: 

• Read the training images of size (X Y), where X 

and Y denote the number of rows and columns of 

each image, respectively . 

• Calculate the covariance matrix S, according to 

Equation (6): 

= 
1

𝑘
∑ (𝐴𝑋𝑥𝑌𝑥𝐽  − 𝐴)̅̅ ̅𝑇𝑗=𝑘

𝑗=1 (𝐴𝑋𝑥𝑌𝑥𝐽  − 𝐴)̅̅ ̅        (6) 

 

Where K is size of the training images, A refer to each 

training image of the whole K images and A¯ is the 

average matrix of the K images. Figure 4 illustrates that 

no need to employ all the obtained feature vectors, 

simply those corresponding to the dominating Eigen 

vectors. Stack the y dominant Eigen vectors to one 

projection matrix P = [P1P2P3...Py] of size X × y. 

 

Fig. (4): Obtained Eigen values after 2DPCA 
 

The projection matrix (P) is used to project all the 

training and testing images to build feature vectors that 

incorporate only the relevant information of each image. 

Note that the size of the assessed feature vector is X   Y 

In the suggested technique, the generated compact 

feature descriptors are to be transferred into vector form, 

and all vectors that belong to the same class are to be 

aggregated into one matrix representing that class. In the 

testing phase, all training sets are kept in sequence, 

where Canonical Correlation Analysis (CCA) is applied 

to match the testing set to the next training set. 

3.5  Classification 

Several research have advocated utilizing either SVM 

[25, 26] or CNN [27, 28] for classifying kidney images. 

In this research, we offer a hybrid classifier strategy that 

combines the usage of a binary SVM for quick decision-

making with the ability to distinguish between normal 

and abnormal kidney images. After that, CNN is used to 

differentiate between various kidney diseases such as 

tumor, cyst, and stone. Our proposed technique boosted 

the efficiency and accuracy of renal disease for rapid 

diagnosis and high accuracy . 

3.5.1 First Decision 

SVMs use a hyperplane space in a high-dimensional 

feature space, learned using an optimization theory 

learning algorithm that incorporates a statistical learning 

theory learning bias [29, 30]. There are two types of 

data: training data and testing data. It has been 

demonstrated that the training data set can generalize and 

correctly predict new data. Data is mapped in the form of 

kernels that measure how similar    or different data 

objects are from one another are used to map data. A   

classification step involves the identification of which 

is closely connected to  the known classes [31, 32]. The 

optimal separating hyperplane is obtained by   

× 
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maximizing the margin between two or more classes of 

the training data sets.by maximizing the margin between 

two or more classes. Midway down the margin, this 

hyperplane has to be minimized . 

1 2 

2 
∥W ∥ 

subject to the constrains yi ((W.Ci + b) ⩾ 1) 

Then by optimizing the subsequent Equation (7), the 

solution of this problem is achieved: 
 

1

2
‖𝑊‖2  −  ∑ ∝𝑖 (𝑦𝑖(�⃗⃗⃗⃗� . 𝑉𝑖  +  𝑏)  −  1)⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑖       (7) 

 

where y is the output result, indicating the class label 

(y ∈ {1,-1} for   binary classifier), C is the input feature 

vectors, and W is the collection of weights, one for each 

input feature. The points chosen from the input training 

feature data (C) that meet the maximum margin above 

and below the hyper- plane [33] are the supported 

vectors V. A unique maximum margin solution is 

determined by the output parameters b and α. The 

chosen support vectors V ′s are represented by the y′s 

and α′s. Equation (8) defines the decision function d(Q), 

which is defined for the kernel (K) as follows. It is 

positive for class 1 and negative for class 2. It predicts 

the classification of an unknown vector Q. 

 

(𝑄)  =  𝑠𝑖𝑔𝑛(∑ 𝐾(𝑄, 𝑉𝑖))𝑦𝑖 ∝𝑖 +  𝑏𝑖               (8) 
 

Using Binary Support Vector Machine (BSVM) for 

the initial judgment to classify CT kidney images as 

normal or abnormal is a prevalent strategy in medical 

image analysis. Here are the steps involved in utilizing 

BSVM for this task : 

• The data collection of 12,446 CT kidney images has 

to be splitted into training, validation, and testing 

sets. This is done to prevent over fitting and to 

evaluate the effectiveness of the classifier on 

unknown data . 

• Common characteristics for kidney images 

categorization include intensity- 

based features, texture features, and morphological 

features. 

• The BSVM model is trained using the training set 

of labeled CT kidney images and their related 

characteristics. The objective is to learn a hyper-

plane that can differentiate normal and abnormal 

images with maximal margin. 

• The trained BSVM model is validated using the 

validation set of labeled CT kidney images. The 

performance criteria utilized for validation include 

accuracy, specificity, area under the receiver 

operating characteristic curve, and sensitivity. 

• The resulting BSVM model is evaluated on the 

testing set of labeled CT kidney images to evaluate 

its performance on unseen data. 

Overall, BSVM is a popular and successful 

classification strategy for CT kidney images. However, it 

is crucial to highlight that the performance of BSVM 

may rely on the choice of hyperparameters and the 

unique features of the data set. 

3.5.2 Second Decision (CNN) 

After executing the initial judgment using Binary 

Support Vector Machine (BSVM) to categorize CT 

kidney images as normal or abnormal, the next step 

might be to employ a Convolutional Neural Network 

(CNN) for further categorization of aberrant images into 

cysts, stones, and tumors . 

A sort of neural network with layers is termed a 

Convolutional neural network. Grid-structured data are 

examined, and after that important characteristics are 

extracted [34]. Employing CNNs have a huge benefit as 

no considerable pre-processing is necessary. CNNs 

which is a feed-forward network have been found to give 

several computational benefits. By mixing both feature 

extraction and classification, CNN is inspired by 

biological processes and tries to find patterns directly 

from images. 

A basic Convolutional Neural Network (CNN) 

comprises four types of layers: convolutional, activation, 

pooling, and fully-connected layers. 

Convolutional layers have distinctive properties: they 

involve local connections and weight sharing. Each 

neuron in the input layer connects only to a small, 

localized region, reflecting the receptive field of the 

human visual system. This local connectivity means that 

different neurons respond to different sections of the 

input, which overlap to form a comprehensive 

representation of the image. Neurons within a 

convolutional layer are organized into feature maps, with 

shared weights across these maps acting as filters. This 

weight- sharing approach significantly reduces the 

number of network parameters, enhancing computational 

efficiency and mitigating over fitting . 
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To capture more complex features of the input data, 

convolutional layers are typically followed by non-linear 

activation layers. Pooling layers are employed to reduce 

the spatial dimensions of the data by aggregating values 

within small rectangular regions. Common pooling 

methods include maximum pooling and average pooling, 

which replace each region with the maximum or average 

value, respectively . 

Pooling layers help to make the network’s output 

more invariant to minor variations in the input. The 

network concludes with one or more fully- connected 

layers, each followed by an activation function, to 

produce the final classification results. Like traditional 

artificial neural networks (ANNs), CNNs are trained by 

minimizing a loss function using gradient descent and 

back- propagation techniques. Research has shown that 

hybrid combinations of loss functions, when properly 

weighted and mixed, often outperform individual loss 

functions  [35–37 .]  

Deep architectures in CNNs enable learning of data 

representations at multiple levels of semantic 

abstraction. This capability allows for the detection of 

complex visual structures, such as vehicles or faces, in 

the final layers by combining simpler, low-level features 

like edges. Designing a deep CNN for specific tasks, 

however, involves complex algorithmic decisions and 

numerous interdependent parameter values. While there 

has been significant progress in deep CNNs for color 

image classification, there is comparatively less research 

focused on texture recognition and medical image 

analysis  [38 .]  

Here are the processes involved in utilizing CNN for 

this discriminating task : 

• CNN architecture needs to be created for 

categorizing the anomalous images into cysts, 

stones, and tumors. The design may comprise 

convolutional layers, pooling layers, dropout layers, 

and fully linked layers . 

• The CNN model is trained using the training set of 

labeled CT kidney images and their related 

characteristics. The objective is to discover the 

traits that may identify between cysts, stones, and 

tumors with high accuracy . 

• The trained CNN model is assessed using the 

validation set of labeled CT kidney images. The 

performance criteria utilized for validation include 

accuracy, precision, recall, and F 1 score . 

• The resulting CNN model is evaluated on the 

testing set of labeled CT kidney images to evaluate 

its performance on unseen data. 

Utilizing CNN for further categorization of aberrant 

CT kidney images can boost the accuracy of the entire 

classification process. However, it is crucial to 

remember that the performance of CNN may rely on the 

individual properties of the data set and the choice of 

hyperparameters. It is recommended to tweak the design 

parameters of CNN to attain the desired enhanced 

outcomes . 

Our suggested model includes a total of 9 layers 

whose comprehensive description is as follow: 

• Input layer: 

This layer sets the form of the input data that the 

model will receive. In this example, it specifies that the 

input images will have a height and width of 128 pixels, 

and a single channel for grayscale images or three 

channels for RGB images . 

• Conv2D layer with 32 filters: 

– This layer conducts convolutional filtering on the 

input images to extract features. 

– It includes 32 filters, each with a size of 3x3 

pixels and employs the ReLU activation function 

to induce non-linearity. 

– The output form of this layer is (126, 126, 32) 

which implies that the layer creates 32 feature 

maps of size 126x126 . 

• MaxPooling 2D layer: 

– This layer conducts pooling operation on the 

output of the preceding convolutional layer to 

down sample the feature maps and minimize their 

spatial dimensions. 

– It employs a pooling size of 2x2 pixels to 

minimize the height and breadth of the feature 

maps by a factor of 2 . 

– The output form of this layer is (63, 63, 32) which 

implies that the layer creates 32 feature maps of 

size 63x63 . 

• Conv2D layer with 64 filters: 

– This layer conducts another round of convolutional 

filtering to extract more complicated features from 

the down sampled feature maps. 

– It includes 64 filters, each with a size of 3x3 

pixels and employs the ReLU activation function 

to induce non-linearity. 
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– The output form of this layer is (61, 61, 64) which 

implies that the layer creates 64 feature maps of 

size 61x61 . 

• MaxPooling 2D layer: 

– This layer conducts another pooling operation on 

the output of the pre- ceding convolutional layer 

to further down sample the feature maps and 

minimize their spatial dimensions. 

– It employs a pooling size of 2x2 pixels to 

minimize the height and breadth of the feature 

maps by a factor of 2 . 

– The output form of this layer is (30, 30, 64) which 

implies that the layer creates 64 feature maps of 

size 30x30 . 

• Conv2D layer with 128 filters: 

– This layer conducts one more round of 

convolutional filtering to extract even more 

complicated features from the down sampled 

feature maps . 

– It has 128 filters, each with a size of 3x3 pixels 

and employs the ReLU activation function to 

introduce non-linearity . 

– The output form of this layer is (28, 28, 128) 

which implies that the layer creates 128 feature 

maps of size 28x28 . 

• MaxPooling 2D layer: 

– This layer conducts one additional pooling 

operation on the output of the preceding 

convolutional layer to further down sample the 

feature maps and minimize their spatial 

dimensions. 

– It employs a pooling size of 2x2 pixels to 

minimize the height and breadth of the feature 

maps by a factor of 2 . 

– The output form of this layer is (14, 14, 128) 

which implies that the layer creates 128 feature 

maps of size 14x14 . 

• Flatten layer: 

– This layer flattens the output of the previous max 

pooling layer into a   1D vector. 

– The output shape of this layer is (14x14x128) = 

25088 which implies that the layer flattens each of 

the 128 feature maps of size 14x14 into a vector 

of length 25088 . 

• Three thick layers: the first with 512 neurons, second 

with 256 neurons, and the last output layer with 3 

neurons :. 

These layers are fully linked layers that take the 

flattened output of the preceding layer as input and apply 

a linear transformation on it. It contains 128 neurons and 

employs a ReLU activation mechanism. The goal of this 

layer is to execute a non-linear change of the flattened 

characteristics to make them more appropriate for 

classification. This is the last output layer of the model 

that takes the output of the preceding dropout layer as 

input and performs a linear transformation to it. It has 3 

neurons, one for each type of kidney illness, and 

employs a softmax activation function to output a 

probability distribution over the categories . 

Overall, this model employs a combination of 

convolutional and dense layers to extract information 

from the input picture and perform classification.  The 

inclusion of dropout layers helps to prevent over fitting, 

while the softmax activation function in the output layer 

allows the model to output a probability distribution over 

the categories. 

4 Experimental Setup 

4.1 Utilized Data set 

The data set was sourced from the Picture Archiving 

and Communication System (PACS) across multiple 

hospitals in Dhaka, Bangladesh. These hospitals 

provided images from individuals who had been 

diagnosed with various kidney conditions, including 

normal, cysts, tumors, or stones  [39 .]  

The data set includes Coronal and Axial slices obtained 

from both contrast and non-contrast examinations of the 

abdomen and urogram. For each diagnosis, DICOM 

studies were meticulously selected to develop a batch of 

images focused on the region of interest corresponding 

to each radiological finding. These DICOM images were 

then converted to a lossless JPEG format, with all patient 

information and metadata removed to ensure privacy . 

Subsequent to conversion, each image was reviewed 

again by both a radiologist and a medical technician to 

verify the accuracy of the data. The final data set 

consists of 12,446 unique images, categorized as 

follows: 3,709 images of cysts, 5,077 images of normal 

kidneys, 1,377 images of stones, and 2,283 images of 

tumors. 
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4.2 Implementation Details 

The LBP feature vector captures the overall description 

of an x-ray renal image via the concatenation of local 

histograms. The user determines the concatenation of the 

histogram, but it should be consistent across all photos. 

The LBP feature vector is very large; for example, given 

a 256x256 pixel image, a sub-block size of 16x16, and 

uniform LBP, the feature space is 944 dimensions. We 

segmented the picture into non-overlapping 16x16 pixel 

zones and then calculated the number of zones in each 

image. The picture size is 256x256, and each zone is 

16x16, yielding (256/16) × (256/16) = 16 x 16 = 256 

zones. Because GLZLM extracts one feature per zone, 

the feature vector size was 256. Hu Moments typically 

generate a constant set of seven characteristics, 

regardless of image size . 

• X1= LBP: 944 x1 

• X2= GLZLM: 256 x1 

• X3= Hu Moments: 7 x1 

To stack them together, we concatenated the feature 

vectors in the following order: LBP, GLZLM, Hu 

Moments. The feature vectors are aligned appropriately 

for stacking. the second feature vector (X2) with size 

256 x 1 will be placed vertically below the first feature 

vector (X1) with size 944 x 1, and then the third feature 

vector (X3) with size 7 x 1 will be layered below them. 

The resulting stacked features vector will have a 

dimension of 1207 x 1  . 

CCA (Canonical Correlation Analysis) is a 

multivariate statistical approach that may integrate or 

fuse several feature vectors into a single vector 

representation. The integration is performed by finding 

linear combinations of the original feature vectors that 

optimize the correlation between them. The result of 

CCA would be a new set of canonical variables, which 

reflect the integrated characteristics. The number of 

canonical variables obtained would depend on the size of 

the original feature vectors and the correlations between 

them. the original feature vectors have dimensions 

944x1, 256x1, and 7x1, the resultant integrated feature 

vector after applying CCA will be 400 x1. It’s vital to 

note that the integration of features using CCA tries to 

capture the 

common information and correlations across the 

feature sets. 

By using 2D PCA to the 400 x1 feature vector, we 

have successfully decreased the dimensionality to 100, 

allowing for simpler visualization and perhaps collecting 

the most relevant information in the data. The output 

feature 100 x1 per each image 

4.3 Evaluation Metrics 

Disease classification performance is evaluated using 

the output of a binary or multi-class classifier. To 

demonstrate our proposal’s good performance, many 

assessment criteria were used, including sensitivity, 

accuracy, specificity, and precision. 

The sensitivity 

It assesses the accuracy of positive cases by 

determining how many positive samples were accurately 

identified. This is expressed in Equation (9), where TP 

stands for true positives (properly discovered 

occurrences) and FN for false negatives (positive cases 

misclassified as negative). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙)  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
               (9) 

Accuracy  

It is used to assess categorization performance. It 

estimates the proportion of samples that are categorized 

properly, as indicated in Equation (10). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 − 𝐹𝑃 + 𝐹𝑁
  (10) 

Specificity  

Equation (11) refers to the conditional probability of true 

negatives given a secondary class. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
   (11) 

Precision  

Equation (12) calculates it as the number of true 

positives divided by the total of true positives and false 

positives. It assesses the algorithm’s prediction capacity. 

Precision relates to how “accurate” the model is in terms 

of how many expected positives are genuinely positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
          (12) 

 

F-score 

It evaluates the positive class by combining precision 

and recall, as illustrated in Equation (13). A high number 

suggests higher model performance on the positive class. 

𝐹 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (13) 
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5 RESULTS AND DISCUSSION 

The binary SVM model’s performance was evaluated 

using a data set of 35,163 CT kidney images. We trained 

the model to classify instances as ’Abnormal’ or 

’Normal’ and assessed its performance with a confusion 

matrix. The used data set was separated into training and 

testing sets. Here, we’ll employ an 80/20 split (80% for 

training and 20% for testing). First, we’ll determine the 

amount of samples for each class in the training and 

testing sets based on the 80/20 split as follow: 

Training Set: 

Normal: 80% of 14,308 = 11,446 samples 

Abnormal (Cyst, Stone, Tumor): 80% of (10,527 + 3,885 

+ 6,443) = 16,684 samples 

Testing Set: 

Normal: 20% of 14,308 = 2,862 samples 

Abnormal (Cyst, Stone, Tumor): 20% of (10,527 + 3,885 

+ 6,443) = 4,171 samples 

The model scored flawlessly in both classes, resulting 

in 100% accuracy overall. This suggests that the model 

accurately classified all instances, which is impressive 

for a binary classification task. The high accuracy 

demonstrates the binary SVM model’s effectiveness in 

correctly diagnosing medical diseases, which is critical 

in the context of medical diagnosis and therapy . 
 

Table )2:( Experimental results comparing our proposed 

against recent state of the art techniques 

Method Year Data size 
Achieved 

accuracy % 

CNN [40] 2019 315 83 

Inception V3 [41] 2020 192 97 

XGBoost [42] 2020 177 77 

AdaBoost [43] 2020 735 75 

2D CNN [44] 2022 8400 97 

Ours 2024 35163 99.9 

 

Additional research and assessment on various data sets 

and tasks are required to determine the model’s 

generalization capacity. The binary SVM model’s 

performance is assessed using 5-fold cross-validation. The 

data set was randomly divided into five subgroups of 

roughly similar size, each with an equal percentage of 

’Abnormal’ and ’Normal’ instances. We trained the binary 

SVM model on four subgroups and tested it on the 

remaining subset before repeating the process for all 

possible subset combinations. The model achieved a perfect 

score on all five folds cross validation sets, resulting in an 

average accuracy of 100% with a standard deviation of 

0.0%. These findings show that the binary SVM model is 

both robust and generalizable, and that it can accurately 

classify medical abnormalities in CT kidney images . 

The binary SVM model constantly performs well across 

the data set, as seen by its 100% accuracy in all five folds 

cross validation subgroups. Following the first judgment 

using BSVM to categorize CT kidney pictures as normal or 

abnormal, the next step is to use a Convolutional Neural 

Network (CNN) to further categorize aberrant images into 

cysts, stones, and tumors. Figure 5 depicts the confusion 

matrix for anomalous occurrences (Cyst, Stone, and Tumor) 

classification. Figure 6 shows the accuracy, recall, and F1 

scores for each class. Precision is the proportion of genuine 

positive forecasts among all positive forecasts, whereas 

recall is the proportion of true positive predictions among 

all real positive cases. The F1 score is calculated as the 

harmonic mean of accuracy and recall, giving equal weight 

to both measures. 

The model performed well across all classes, achieving 

excellent accuracy and recall. This indicates its 

effectiveness in correctly identifying class instances while 

minimizing false positives and negatives. The findings 

demonstrate high accuracy, recall, and F1-scores for all 

three classes (Cyst, Stone, and Tumor), indicating effective 

detection by the model. Both the macro and weighted 

average F1-scores are similarly robust, reflecting strong 

overall performance. Additionally, the high accuracy score 

suggests the model identified 99.9% of the samples in the 

data set accurately. The findings in Table 2 show that our 

proposal surpasses other state-of- the-art methods. 

 

 

 

 

 

 

 

 

 

Fig. (5): Confusion matrix for Abnormal instances 

(Cyst, Stone, and Tumor) 
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The impressive results from our proposal stem from 

combining various machine learning methods, including 

BSVM, CNN, LPB, GLZM, and Hu moment, which 

enhance model performance. Below is a brief overview 

of each method’s contribution to the model’s 

effectiveness: 

• Employing the supervised learning method known 

as BSVM (Binary Sup- port Vector Machine) to 

classify data into one of two categories can handle 

enormous volumes of data and is noted for its 

ability to generalize effectively. 

• Our CNN was intended to automatically find robust 

characteristics in images 

for improved identification of important aspects in the 

images boosting its ability to categorize them 

appropriately . 

• Local Binary Pattern (LBP) that calculates the 

texture of an image by 

comparing the intensity of each pixel with its 

surrounding pixels was utilized as one of the used 

feature descriptors in our suggested . 

• Gray Level Co-occurrence Matrix (GLZM) is 

another feature extraction 

approach used in image processing. It estimates the 

incidence of pairs of pixel intensities in a picture. 

By employing GLZM, the model was able to gather 

more information about the textures of the images, 

which can be valuable for categorization. 

 

Fig. (6): Performance measures for Abnormal instances (Cyst, Stone, and Tumor) 



  82                                                                                            Wessam S. ElAraby et al. 

 

Arab J. Nucl. Sci. Appl., Vol. 57, 4, (2024)   

 

 

In addition to the texture-based feature descriptors, Hu 

moment which is a set of mathematical characteristics 

for form analysis was applied. It was used to describe the 

form of an item in a photograph. By employing Hu 

moment, the model may be able to collect extra 

information on the forms of the objects in the images . 

By integrating these strategies, our model leveraged the 

strengths of each methodology and enhanced its image 

classification capacity through CCA, effectively 

combining the complementary performance of each 

descriptor. 

The use of 2DPCA effectively preserves dominant 

features while eliminating redundant ones, positively 

impacting computational complexity and runtime, as shown 

in Figure 7. This figure compares the time efficiency of our 

method with current strategies across all three classes (Cyst, 

Stone, and Tumor), demonstrating that our approach 

achieves the lowest runtime and fastest results.
 

 

 
 

Fig. (7): Time comparison between the proposed and most recent techniques over all three 

classes (Cyst, Stone, and Tumor)) 

 

 

Fig. (8): The accuracy comparison between our proposed and classical machine learning 

techniques over all three classes (Cyst, Stone, and Tumor) 
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Figure 8 compares our proposed machine learning 

strategies with conventional methods across all three 

classes (Cyst, Stone, and Tumor) based on accuracy. Our 

approach achieved the highest performance, reaching an 

accuracy of 99.9%. 

Table (3): The comparison between the proposed and most 

recent classical machine learning in Cyst class. 

Method Precision Recall F1 Score 

KNN 0.931 0.943 0.937 

Tree 0.925 0.953 0.939 

Linear Discrimination 0.814 0.835 0.824 

Quadratic Discriminant 0.835 0.865 0.850 

Random Forest 0.937 0.949 0.943 

SVM 0.867 0.888 0.877 

Navies Bayes 0.815 0.656 0.727 

Logistic Regression 0.923 0.911 0.917 

Our Proposed 0.9995 0.9995 0.9995 

 

Table (4): The comparison between the proposed and most 

recent classical machine learning in Stone class. 

Method Precision Recall F1 Score 

KNN 0.916 0.922 0.919 

Tree 0.873 0.841 0.857 

Linear Discrimination 0.699 0.635 0.665 

Quadratic Discriminant 0.707 0.716 0.711 

Random Forest 0.911 0.919 0.915 

SVM 0.738 0.765 0.751 

Navies Bayes 0.687 0.631 0.658 

Logistic Regression 0.901 0.909 0.905 

Our Proposed 0.9974 1 0.9987 
 

Tables 3, 4, and 5 compare the performance of our 

proposed approach with various classical machine 

learning techniques for individual classes (Cyst, Stone, 

and Tumor). Clearly, our method outperformed all 

classical techniques for each class. 

6 CONCLUSIONS 

In this work we presented our suggested strategy 

leveraging AI approaches to improve the identification 

and classification of kidney diseases in CT images. Our 

two-step decision technique has obtained exceptional 

results with a binary 

Table (5): The comparison between the proposed and most 

recent classical machine learning in Tumor 

class. 

Method Precision Recall F1 Score 

KNN 0.928 0.929 0.928 

Tree 0.888 0.859 0.873 

Linear Discrimination 0.714 0.714 0.714 

Quadratic Discriminant 0.751 0.748 0.749 

Random Forest 0.925 0.934 0.929 

SVM 0.789 0.792 0.790 

Navies Bayes 0.712 0.699 0.705 

Logistic Regression 0.920 0.919 0.919 

Our Proposed 0.9992 0.9977 0.9984 

 

accuracy of 100 % to differentiate between normal and 

abnormal kidney images. The ultimate discriminating 

judgment between three renal diseases was made with 

accuracy score of 99.9%. The strategy employs a mix of 

an efficient Image pre-processing, segmentation, feature 

extraction, and fusion approaches. Classification was 

carried out utilizing a two-step classification strategy 

combining both SVM and CNN. Compared to previous 

approaches published in the literature, the suggested 

strategy has attained greater accuracy ratings. The results 

show that the proposed technique has the potential to 

boost kidney disease detection and classification 

efficiency and accuracy, and helping doctors in their 

clinical practice. 
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