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In this paper, we utilize the Brueckner-Hartree-Fock (BHF) method to compute the static 

properties of neutron stars (NS) at zero temperature. We specifically apply a microscopic 

equation of state for pure neutron matter (PNM). Three-body forces have also been 

included at different densities. To accurately replicate the nuclear matter saturation 

point, we have incorporated recent and realistic two-body nuclear interactions. 

Specifically, we have used the Argonne V18 and CD-Bonn NN potentials, integrated via 

the Urbana model, to account for the three-body force. We have calculated the properties 

of neutron stars by numerically solving the Tolman-Oppenheimer-Volkov structure 

equations. Our results indicate a maximum mass configuration of M = 1.7 ± 0.05 Mʘ (M 

= 2.12 ± 0.04 Mʘ) when using CD-Bonn (Argonne 18) interaction, respectively. These 

values are consistent with the observed range of neutron star masses. Furthermore, we 

have discussed the sensitivity of using modern NN potentials and compared our results 

with other theoretical predictions and observed data. 
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I. INTRODUCTION 

Understanding the Equation of State (EOS) for 

nuclear matter has profound implications for 

astrophysics. This fundamental equation is vital in 

interpreting laboratory-scale nuclear properties and the 

sophisticated workings of celestial phenomena. The EOS 

provides critical insights into the macroscopic behavior 

of nuclei, guiding our understanding of their stability and 

dynamics. Moreover, within astrophysics, the EOS is 

paramount in unravelling phenomena such as supernovae 

and the properties of neutron stars. Neutron stars, known 

for their extreme densities, serve as cosmic laboratories 

for testing the limits of our understanding of physics 

under extreme conditions. Through careful exploration 

of the EOS, researchers gain invaluable insights into the 

underlying physics governing these cosmic entities, 

facilitating a deeper comprehension of the universe's 

most crucial phenomena. Thus, the EOS for nuclear 

matter stands as a cornerstone in nuclear physics and 

astrophysical research, offering a pathway to unlock the 

mysteries of the cosmos. 

The dependence of the nuclear equation of state on 

density plays a crucial role in the stability of neutron stars 

against gravitational collapse. At nuclear matter density, 

employing only realistic two-body forces in the nuclear 

EOS does not yield the correct saturation point as derived 

from phenomenological data on various nuclei [1]. Three-

body forces (TBF) significantly impact the effective 

nucleon-nucleon interaction within the medium across 

several theoretical frameworks, including Brueckner-

Hartree-Fock (BHF) [2], Dirac-BHF [3, 4], variational 

methods [5, 6], and Monte Carlo techniques [7, 8]. 

Phenomenological TBFs have been utilized to accurately 

determine the saturation point of nuclear matter and to 

adjust the overall equation of state for both symmetric and 

asymmetric nuclear matter, as well as pure neutron matter 

(PNM). It is essential to study nuclear matter, obtain 

accurate equations of state, and predict structures based on 

dense matter properties to understand neutron stars. 

Therefore, in this study, we adopt a more traditional 

approach by positing that the core of the neutron star 

composed solely an idealized infinite, homogeneous 

system of neutrons, treated as a gas of interacting 

fermions at T = 0 K. This system's properties are 

determined by the neutron-neutron interaction and are 

defined as pure neutron matter (PNM) [10, 11]. It is 

important to accurately study nuclear matter and obtain an 
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accurate EOS to understand neutron stars and predict the 

structure of dense matter [12, 13]. 

The nuclear EOS is calculated for the pure neutron 

matter within the Bethe-Brueckner-Goldstone (BBG) 

expansion, which includes the effects of three-body 

forces. Details of this calculation are provided in Sec. II, 

the EOS is calculated using modern NN interactions like 

Argonne V18 and CD-Bonn potentials. This work is an 

extension of our calculations in [11], but with a very 

high densities, that it is suitable for studying the 

composition of neutron stars. The properties of the 

neutron stars based on a microscopic EOS and the mass-

radius relation will be explained in Sec. III with the 

comparison to other NN potentials. 

II. EQUATION OF STATE 

The BBG theory, developed by Brueckner and Bethe 

with Goldstone's contributions, provides a connected 

cluster expansion for the energy per nucleon in nuclear 

matter [14]. Within this framework, specific categories 

of interconnected diagrams are meticulously aggregated, 

culminating in a closed-form expression extended to 

infinite orders. This results in the determination of the 

reaction matrix G, which plays a pivotal role in the 

theory's formulation. 

𝐺(𝑛; 𝜔) = 𝑣 + 𝑣 ∑
|𝐾𝑎𝐾𝑏> 𝑄 <𝐾𝑎𝐾𝑏|

𝜔−𝑒(𝐾𝑎)−𝑒(𝐾𝑏)+𝑖𝜂
𝐺(𝑛; 𝜔)𝐾𝑎𝐾𝑏

       (1) 

Within the framework of Brueckner-Bethe-Goldstone 

(BBG) theory, the expression governing the reaction 

matrix G comprises multiple components. One 

constituent encompasses the original nucleon-nucleon 

interaction denoted as v, while density of nucleons 

represented by n, and the initial energy parameter ω. 

Another integral term involves the Pauli operator | kakb > 

Q < kakb |. The single-particle energy e(k) within this 

equation combines kinetic and potential energy 

components, denoted as U(K). 

U(K). 𝒆(𝜅) =  𝒆(𝒌; 𝒏) =
ħ2

𝟐𝒎
𝜅2 + 𝑼(𝜅; 𝒏)               (2) 

The single particle potential (s.p.) U(K) plays            

a crucial role within the framework of the Brueckner 

Hartree Fock (BHF) approximation. To ensure the 

continuity at k = kf, U(K) can be formulated as follows: 

𝑼𝑩𝑯𝑭(𝜅; 𝑛) = ∑  〈𝜅𝜅′|𝜅′≤𝑘𝑓 𝑮(𝒏; 𝒆(𝜅) + 𝑒(𝜅′))|𝜅𝜅′〉
𝑎
  (3) 

The subscript "a" denotes the process of 

antisymmetrizing the matrix element within the 

Brueckner Hartree Fock (BHF) approximation, it is 

imperative to solve equations (1) through (3) in a self-

consistent manner. Once the auxiliary self-consistent 

potential is introduced, the calculation of the binding 

energy per nucleon can be carried out utilizing the 

subsequent equation:  

𝑬

𝑨
=

𝟑

𝟓

ħ𝟐

𝟐𝒎
𝑘𝑓

2 + 𝐷𝐵𝐻𝐹                                                        (4) 

𝐷𝐵𝐻𝐹(𝑛) =
1

2

1

𝐴
  ∑  〈𝜅𝜅′|𝑘.𝜅′≤𝑘𝑓 𝑮(𝒏; 𝒆(𝜅) + 𝒆(𝜅′))|𝜅𝜅′〉

𝒂
 (5) 

Numerous studies have investigated the inclusion of 

three-hole line contributions within the Bethe-

Brueckner-Goldstone (BBG) expansion [15, 16]. These 

studies have indicated that such contributions are largely 

insignificant, with the BBG expansion achieving 

convergence. However, nonrelativistic calculations 

relying on two-body forces (2BF) have encountered 

difficulties in accurately reproducing the saturation point 

of symmetric nuclear matter [17]. Despite the fact that 

the binding energy per particle closely matches the 

empirical value of approximately -16 MeV at the 

minimum of the saturation curve, the density 

corresponding to it exceeds the empirical value by 

approximately 30 to 40 times. To reconcile this 

inconsistency, the incorporation of three-body forces 

(TBF) becomes necessary [15, 18]. Various types of 

TBFs have been employed in nuclear matter 

calculations, including semi-phenomenological TBFs 

such as the Urbana TBF [5] and microscopic TBFs [19, 

20] rooted in meson exchange theory for NN 

interactions. Phenomenological TBFs have been utilized 

to replicate the saturation point of nuclear matter and 

rectify the entire equation of state for both symmetric 

and asymmetric nuclear matter [9]. However, achieving 

accurate reproduction of experimental binding energies 

of light nuclei and correcting saturation points using        

a single straightforward set of TBF appears to be 

exceedingly challenging [21]. 

In recent years, significant advancements have been 

achieved in theoretical frameworks. One notable 

approach, the phenomenological TBF method, utilizes 

meson exchange principles to analyze NN interactions. 

This approach has demonstrated effectiveness in 

replicating key characteristics of nuclear matter, 

including the saturation point and properties such as 

binding energies and radii of light nuclei. It operates 

through an attractive component (V2
ijk) resulting from             

a two-pion exchange involving the excitation of an 

intermediate Δ-resonance alongside a repulsive central 

term (VR
ijk) based on phenomenological considerations. 
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 𝑽𝒊𝒋𝒌 = 𝑽𝒊𝒋𝒌
𝟐𝝅 + 𝑽𝒊𝒋𝒌

𝑹                                               (6) 

The component of the TBF stemming from two-pion 

exchange can be represented through a cyclic iteration 

across nucleon indicators i, j, and k, involving combinations 

of anticommutator and commutator terms. Specifically, the 

formulation for the two-pion exchange contribution to the 

TBF is given as follows: 

𝑽𝒊𝒋𝒌
𝟐𝝅 = 𝐴 ∑𝑐𝑦𝑐 ({𝑋𝑖𝑗 ‚ 𝑋𝑗𝑘} {𝜏𝑖 . 𝜏𝑗  ‚  𝜏𝑗 . 𝜏𝑘}                                              

           + 
1

4
 [𝑋𝑖𝑗 ‚ 𝑋𝑗𝑘][𝜏𝑖 . 𝜏𝑗  ‚  𝜏𝑗 . 𝜏𝑘] )‚                        (7) 

Where 

𝑋𝑖𝑗 = 𝑌(𝑟𝑖𝑗)𝜎𝑖 ∙  𝜎𝑗 + 𝑇(𝑟𝑖𝑗) 𝑆𝑖𝑗                       (8) 

The operator Xij denotes the one-pion exchange, 

while σ and τ stand for the Pauli spin and isospin 

operators, respectively. The tensor operator is 

represented as 𝑆𝑖𝑗 = 3[ (𝜎𝑖  ∙  𝑟𝑖𝑗)(𝜎𝑗  ∙  𝑟𝑖𝑗) − 𝜎𝑖𝜎𝑗  ]. 

Furthermore, Y(r) and T(r) signify the Yukawa and 

tensor functions, respectively, which are linked to the 

one-pion exchange similar to the two-body potential. 

And the repulsive term is given by 

𝑽𝒊𝒋𝒌
𝑹 = 𝑈 ∑𝑐𝑦𝑐  𝑇2(𝑟𝑖𝑗)𝑇2(𝑟𝑗𝑖)                        (9) 

It is mentioned that in the Brueckner Hartree Fock 

approach, the parameters A and U can be adjusted to 

match observed nuclear properties and correct the 

saturation point. Here, we utilize the parameters A (less 

than 0) and U (greater than 0) alongside NN potentials. 

A prior study [11] employed a phenomenological three-

body force (TBF) in the scenario of pure neutron matter, 

employing the Argonne V18 and CD-Bonn nucleon-

nucleon potentials with and without TBF. Results 

indicated a significant reduction in discrepancies 

between equations of state (EOS) obtained from the two 

potentials, not just in the vicinity of saturation, but also 

throughout an extensive range of densities. In our current 

work, we adopt the same TBF model for pure neutron 

matter, spanning a broad range of densities typical of 

neutron star interiors. The resulting EOS's obtained 

using the Argonne V18 and CD-Bonn NN potentials for 

pure neutron matter are depicted in Figure 1. 

The CD-Bonn interaction's non-local nature can lead 

to a softer EOS at high densities compared to the 

Argonne V18 interaction. This divergence arises from 

the CD-Bonn interaction's non-locality introduces more 

short-range components than the Argonne V18 

interaction, which leads to more binding at high 

densities. Conversely, the Argonne V18 interaction has   

a stronger tensor force that leads to more repulsion at 

high densities, making the EOS stiffer [22]. 

 

Fig. (1): illustrates the energy per particle (E/A) plotted 

against density for pure neutron matter. The 

outcomes are derived by incorporating TBF 

alongside the realistic CD-Bonn non-local 

potential (indicated by the solid line) and 

Argonne V18 local potential (represented by 

the dashed line), respectively. 
 

The expression for the energy per nucleon of asymmetric 

nuclear matter (ANM) is stated as follows: 

𝑬

𝑨
(𝒏 . 𝜷) =

𝑬

𝑨
(𝒏. 𝜷 = 𝟎) + 𝐸𝑠𝑦𝑚𝜷2               (10) 

 

We introduced the asymmetry parameter 
 

𝜷 =  
𝒏𝒏−𝒏𝒑

𝒏
                                                      (11) 

In the context where np and nn are not equal, with np 

representing the proton number density and nn 

representing the neutron number density, and where β = 1 

denotes neutron matter while β = 0 denotes symmetric 

matter. The nuclear symmetry energy, Esym(n), 

characterizes the energy cost associated with changing 

the proton-neutron asymmetry of nuclear matter.  
 

𝑬𝒔𝒚𝒎(𝑛) ≡
1

2 

𝜕2 𝐸 / 𝐴

𝜕𝜷𝟐 |𝜷=0                                 (12) 

 

This energy can be characterized as the disparity 

between the energy per nucleon of pure neutron matter 
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and that of symmetric nuclear matter at equivalent 

densities.  Mathematically, it can be formulated as: 

𝑬𝒔𝒚𝒎(𝑛) =
𝐸

𝐴 
(𝑛. 𝜷 = 1) − 

𝐸

𝐴 
(𝑛. 𝜷 = 0)      (13) 

 

The stellar matter's pressure (P) can be 

determined by relating it to the energy per nucleon. 

This can be expressed through the following 

equation, providing insight into the internal 

dynamics of celestial bodies. 

𝑷 = 𝜌𝟐  
𝒅(𝑬 /𝑨 )

𝒅𝜌
                                    (14) 

In Figure 2, the pressure of PNM is depicted for 

the two nuclear interaction models, with density (ρ) 

as the independent variable. Our findings concerning 

P(ρ) using the CD-Bonn model align closely with 

those of [10], using the same potential. 

 

Fig. (2): illustrates the Pressure plotted against density for 

pure neutron matter. Our results are obtained 

with inclusion of TBF alongside the realistic CD-

Bonn non-local potential (indicated by the solid 

line) and Argonne V18 local potential 

(represented by the dashed line), respectively. 
 

III. THE PROPERTIES OF NEUTRON STARS 

Following a supernova explosion [23], the core 

collapse of a massive star gives birth to a neutron star. 

This phenomenon occurs exclusively in stars with 

adequate mass, typically estimated to be between 8 

and 25 times that of the sun, as they near the 

conclusion of their lifecycle. The compact nature of 

neutron stars enables them to resist gravitational 

collapse through mechanisms rooted in nuclear 

physics. This unique characteristic transforms neutron 

stars into ideal environments for scrutinizing the 

behavior of nuclear matter [23]. 

Moreover, the structural attributes of a non-

rotating neutron star are accessible through a 

computational approach. Researchers achieve this by 

numerically integrating the hydrostatic equilibrium 

equation within the framework of general relativity, 

employing the Tolman-Oppenheimer-Volkoff 

equations [24, 25]. The structural details allows for a 

deeper understanding of the internal dynamics and 

stability mechanisms governing neutron stars, 

contributing valuable insights to astrophysical 

research. 

𝑑𝑃

𝑑𝑟
=  −𝐺

𝑚(𝑟)𝜀(𝑟)

𝑐2𝑟2
(1 +

𝑃(𝑟)

𝜀(𝑟)
) (1 +

4𝜋𝑟3𝑃3(𝑟)

𝑐2𝑚(𝑟)
) (1 −

2𝐺𝑚(𝑟)

𝑐2𝑟
)

−1
   (15) 

 

And  

 

𝑑𝑚(𝑟)

𝑑𝑟
=  

4𝜋

𝑐2 𝑟2𝜀(𝑟).                                                       (16) 

 

Determining a neutron star's properties such as mass 

and radius involves a process where central density is a 

variable. It assumes a spherically symmetrical mass 

distribution in hydrostatic equilibrium, disregarding 

rotational effects and magnetic fields. This procedure 

entails integrating Equations (15) and (16) until the 

surface pressure equals that corresponding to the 

density of iron. Essential in this computation are the 

gravitational constant, G, and the gravitational mass, 

m(r). The outcome of this integration provides values 

for the neutron star's radius and gravitational mass.   

The pertinent equations (15) and (16) can be         

located within the Tolman-Oppenheimer-Volkoff 

framework [24, 25]. 

𝑀𝐺 ≡ 𝑚(𝑅) =
4𝜋

𝑐2 ∫ 𝑑𝑟 𝑟2𝜀(𝑟)
𝑅

0
                        (17) 

The Eqs. (15) and (16) describing the neutron star 

structure were integrated using the microscopic EOS 

for pure neutron matter, as illustrated in the 

preceding section, to simulate the core of the neutron 

star. 
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Fig. (3): illustrates the gravitational mass, MG, in solar mass units (Mʘ), plotted against both the radius, R, 

and the central density, nc. These results stem from employing EOS for Brueckner calculations, 

incorporating TBF for the pure neutron matter. Two realistic potentials, Argonne V18 (local) and 

CD-Bonn (nonlocal), are utilized in these EOS. 
 

The results are depicted in Figure 3, where the 

gravitational mass, MG, expressed in solar mass units 

(Mʘ = 1.99 × 1033 g), is plotted against both the radius, 

R (left panel), and the central density, nc (right panel ). 

The solid line represents the CD-Bonn (nonlocal) 

potential, while the dashed line signifies the Argonne 

V18 potential. Results derived from the CD-Bonn 

potential exhibit a relatively softer trend, leading to a 

lower maximum neutron star mass, which falls below 

recent observational measurements. Conversely, 

outcomes derived from the Argonne V18 + TBF (local) 

potential demonstrate a stiffer behavior, with a 

maximum mass of 2.13 Mʘ and a corresponding radius 

of 8.6 km. This maximum mass value aligns with 

the largest observed mass to date, (2.14 ± 0.10) Mʘ [26] 

for PSR J0740+6620, and is consistent with other 

theoretical predictions [27]. 

The differences in the neutron star masses obtained 

using CD-Bonn and Argonne V18 potentials stem from 

the non-local nature of the CD-Bonn potential. 

Specifically, the CD-Bonn potential includes strong non-

localities that resulting in larger 3S1 wave functions at 

distances less than 0.8 fm, and softer repulsive cores 

compared to the local potential. While these differences 

in the potentials’ predictions for many-body systems are 

less pronounced than those observed with older 

potentials. Consequently, selecting for the local 

representation may be more suitable in this scenario due 

to its simplicity, enabling more precise many-body 

calculations [28]. 
 

Table (1): The characteristics of the configuration with the 

maximum mass acquired for various potentials. 

MG/Mʘ represents the gravitational (maximum) 

mass, along with the associated radius (R) and 

central number density (nc). 

)3-(fm cn R(km) ʘM /GM Model 

1.97 5.22 1.32 CD-Bonn 

1.98 5.56 1.50 Argonne V18 

1.39 9.1 1.71 CD-Bonn +TBF 

1.35 9.2 2.12 Argonne  V18 + TBF 

1.34      [30] 9.7 1.8 Argonne  V14 + TBF 

1.33      [30] 9.54 1.94 Paris potential + TBF 

[30]  1.70 ± 0.5 PSR J0621+1002 

[26]  2.14 PSR J0740+6620 
 

In table 1. A comparison of the properties associated 

with the maximum mass configuration for the adopted 

models, along with the results from [29] in case of two-

body force only. As expected, the addition of nuclear TBF 

leads to larger masses than calculations solely considering 

two-body forces. This discrepancy reflects the significant 

modification of the maximum mass configuration and the 

EOS resulting from nuclear TBF. The table further 

compares our results with those derived from two other NN 

interactions: the local Argonne V14 and the non-local Paris 

potentials, both implemented with the same TBF from [30]. 

Notably, there are significant variations in maximum 

masses across these scenarios, confirming the sensitivity of 

results to the specific choice of NN interaction and TBF. 
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IV. CONCLUSIONS  

The microscopic equation of state (EOS) 

incorporated by the Three-Body Forces (TBF) has been 

computed at extremely high densities for pure neutron 

matter at absolute zero temperature, employing the 

Brueckner-Hartree-Fock (BHF) method with the CD-

Bonn and Argonne V18 nucleon-nucleon (NN) 

potentials. The addition of the TBF within the Urbana 

model has been used in order to improve the saturation 

properties. 

In our calculations, the analysis reveals a proximity 

of both saturation characteristics to the empirical value . 

Notably, the calculation of BHF with the inclusion of 

TBF illustrate a stiffer EOS with the Argonne V18 NN 

potential compared to the CD-Bonn variant. Within the 

microscopic EOS, neutron star mass-radius relationships 

have been established using the Tolman-Oppenheimer-

Volkoff (TOV) equation with compatible way. The 

adopted Argonne V18 potential, our calculations align 

with observed neutron star masses [26] (PSR 

J0740+6620), while despite the softer nature of the 

maximum mass calculated with the CD-Bonn potential 

compared to Argonne V18, it concurs with measured 

neutron star masses, notably those observed by Splaver 

(PSR J0621+1002) [31, 32]. However, the limiting 

masses, radii, and central densities generated by both 

interactions are relatively close to each other. It is 

emphasized that the inclusion of TBF is crucial in 

deriving the microscopic EOS and neutron star 

parameters. Additionally, configurations such as 

maximum masses and radii of neutron stars are sensitive 

by modern NN potentials. 
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