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The dispersion equation for isothermal ionic sound waves is derived and analyzed for collisionless 

nonmagnetized dusty plasma consisting of quantum gases of electrons, ions, and dust at hot 

temperatures,  and an exact expression is obtained for the linear velocity of ionic sound. Analysis has 

been carried out by the method of the Bernoulli pseudopotential. The quantum effects include, Fermi 

degenerate pressure, and exchange correlation potential. The ranges of phase velocities of periodic ionic 

sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, the 

soliton velocity cannot be lower than the linear velocity of ionic sound. A graph should plotted between 

the frequency and wave number, three region should obtained, solutions in the form of periodic ionic 

sound waves should be sought precisely in the range of velocities. The profiles of physical quantities in a 

periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and 

the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase 

with the ion concentration and the term of dusty plasma as well as term of hot quantum electron and ion 

may effect on the dispersion relation. The application of this work has been pointed out for laboratory as 

well as for space dusty plasmas.  
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Introduction 

The number of theoretical publications devoted to 
various collective processes in quantum effects at 
electron–ion–dust plasmas (henceforth referred to 
as e–i–d plasma has increased enormously in 
recent years. However, due to contamination, dust 

impurities may exist in quantum plasmas like the 
microelectronic devices or metallic nano 
structures. This interest is primarily due to the fact 
that such plasma is typical rather than exceptional 
in astrophysical conditions. For example, it is 
assumed that such plasma exist in the inner regions 
of accretion disks near black holes [1], in 

magnetospheres of neutron stars [2], in active 
galactic nuclei [3], and even in solar flares [4]. The 
difficulties in developing the nonlinear wave 
theory in degenerate plasmas at a nonzero 
temperature were overcome using the new method 
of the Bernoulli pseudo- potential [5] and an exact 
estimation of the Fermi–Dirac integral [6]; as a 

result, a nonlinear theory of isothermal electron 
plasma waves in a degenerate plasma at an 
arbitrary nonzero temperature has been developed 
[6]. 
 
The influence of quantum effects on the excitation 

of two instabilities, namely quantum dust acoustic 
and quantum dust-lower-hybrid waves due to the 
free streaming of ion/dust particles in uniformly 
magnetized dusty plasmas was investigated using a 
quantum hydrodynamic model pointed out for 
laboratory as well as for space dusty plasmas [7].  
 

The kinetic quantum Zakharov equations in dusty 
plasmas that describe nonlinear coupling of high 
frequency Langmuir waves to low 
frequency plasma density variations, for cases of 
non-degenerate and degenerate plasma electrons 
was derived at [8].  
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Possible Jeans instabilities of self-gravitating 
astrophysical quantum dusty plasma systems with 
electrostatic perturbations were investigated [9].  
 

A generalized dielectric constant for unmagnetized 
quantum dusty plasma composed of electrons, 
ions, and charged dust particulates was described 
by using a quantum hydrodynamic (QHD) model 
with neglecting the electron inertial force in 
comparison with the electron pressure [10]. The 
authors of Refs.[11] and [12],[13],[14] have used 
quantum transport models for the electrons and 

ions, and derived modified dispersion relations for 
Langmuir and ion-acoustic waves at unmagnetized 
plasma. In nearly all these publications, the gas 
dynamic approach based on dynamic equations for 
gases was used [12]-[15], in which dusty plasma 
components are treated as cold; i.e., these 
components are at a nonzero temperature and obey 

one of the following equations of state for cold 
Fermi gases (depending on the dimensionality of 
the gas). However, in a number of recent 
publications [16–21], collective effects in a 
quantum dusty plasma are considered. For 
example, the existence of low temperature and 
high particle number density has been observed 

where the de Broglie wavelength of the plasma 
particles is comparable to the dimension of the 
system and so the quantum effects cannot be 
ignored.[16]. Quantum plasmas are studied mainly 
by two approaches, viz. quantum kinetic approach 
and quantum hydrodynamic (QHD) approach. The 
kinetic approach is needed to discuss the Landau 
damping [17] of waves in quantum plasmas. The 

most widely used approach for studying quantum 
plasmas is QHD approach. 18] was the first to give 
the mathematical derivation of QHD model. Due 
to the quantum tunneling effects, a new force in 
terms of the gradient of Bohm potential [19] 
appears in the momentum equation. The existence 
of DIA wave has been theoretically reported in 

metallic multi walled carbon nanotubes [20]. The 
various linear and nonlinear phenomena of 
quantum dust acoustic [21]. 
 
This study aims at developing a dispersion relation 
of sound waves in a hot nonmagnetized e-i-d 
plasma, in which the temperature of electron, ion 

and dust quantum – degenerate gases differ from 
zero temperature. In fact, this study is a 
continuation of [6,22, 23], in which the same basic 
concepts are used (three – liquid gas dynamics 

with massless electrons, ion and dust, exact 
nonintegral from the equations of state of hot 
Fermi gases, and the Bernoulli Pseudo-potential 
method) as in [22] which treated electron ,positron 

and ion plasma. 
 
Basic Equations 

Here, quantum plasma with electrons, ions, and 
dust particles is considered. The dust grains are 
negatively charged and do not move as they are 
highly massive. Owing to small mass, the electrons 
are supposed to be inertialess. The system of 

equations describing the dynamics is as follows, to 
describe the processes occurring in such plasma, 
the following 1D gas dynamic equations for the 
components: the continuity equation as in [22] and 
[24] will be used. 
 
𝜕𝑛𝑒 ,𝑖,𝑑

𝜕𝑡
+

𝜕(𝑛𝑒 ,𝑖,𝑑𝑉𝑒 ,𝑖,𝑑)

𝜕𝑡
= 0 ,                                   (1) 

 
The equation of the dynamics of ions and dust. 

𝜕𝑉𝑖 ,𝑑

𝜕𝑡
+ 𝑉𝑖 ,𝑑

𝜕𝑉𝑖 ,𝑑

𝜕𝑥
= − 

𝑞𝑖,𝑑

𝑚 𝑖,𝑑

𝜕𝜑

𝜕𝑥

+
1

𝑚 𝑖,𝑑  𝑛𝑖,𝑑 

𝜕𝑃𝑖,𝑑

𝜕𝑥

 +

ℎ2

16𝜋2𝑚 𝑖,𝑑
2

𝜕

𝜕𝑥
{

1

𝑛𝑖,𝑑
 

𝜕2𝑛 𝑖,𝑑

𝜕𝑥2

−
1

𝑛 𝑖,𝑑
(
𝜕𝑛 𝑖,𝑑

𝜕𝑥
)2
 } ,                      (2) 

The equation of electron dynamics 
𝜕𝑉𝑒

𝜕𝑡
+ 𝑉𝑒

𝜕𝑉𝑒

𝜕𝑥
=

 

𝑞𝑒

𝑚𝑒

𝜕𝜑

𝜕𝑥

−
1

𝑚𝑒  𝑛𝑒 

𝜕𝑃𝑒

𝜕𝑥

 +
ℎ2

16𝜋2𝑚𝑒
2

𝜕

𝜕𝑥
{

1

𝑛𝑒
 

𝜕2𝑛𝑒
𝜕𝑥2

−
1

𝑛𝑒
(
𝜕𝑛𝑒
𝜕𝑥

)2
 }, (3) 

 
 

And the Poisson equation 
𝜕2𝜑

𝜕𝑥2 = 4𝜋(𝑛𝑒𝑞𝑒 +𝑛𝑖𝑞𝑖−𝑛0𝑑𝑧0𝑑) ,                  (4) 

While in view of the quasi-neturality of the 
plasma, the following equality for the unperturbed 
values of concentrations can be written: 
𝑛𝑒𝑞𝑒 = 𝑛𝑖𝑞𝑖−𝑛0𝑑𝑧0𝑑  ,                                    (5) 

The terms in equations (3) and (4) related to the 
pressure gradient take into account the collective 
quantum mechanical interaction between particles 
(fermions), the last terms in these equations are 
also due to quantum effect namely the quantum 

wave nature of particles. 
Disregarding the second quantum terms, equations 
of motions (2), (3) can be rewritten in the form: 
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𝜕𝑉𝑖 ,𝑑

𝜕𝑡
+ 𝑉𝑖 ,𝑑

𝜕𝑉𝑖 ,𝑑

𝜕𝑥
= − 

𝑞𝑖,𝑑

𝑚 𝑖,𝑑

𝜕𝜑

𝜕𝑥

+
1

𝑚 𝑖,𝑑  𝑛𝑖,𝑑 

𝜕𝑃𝑖,𝑑

𝜕𝑥

  ,            (6) 

𝜕𝑉𝑒

𝜕𝑡
+ 𝑉𝑒

𝜕𝑉𝑒

𝜕𝑥
=  

𝑞𝑒

𝑚𝑒

𝜕𝜑

𝜕𝑥

−
1

𝑚𝑒  𝑛𝑒  

𝜕𝑃𝑒

𝜕𝑥

 ,                             (7) 

This system with the equation of state for a warm 
Fermi gas of electrons, ions and dust has been 
supplemented. It has the form of an implicit 
parametrically defined function and contains 
Fermi- Dirac integrals, which formerly assumed to 
be noncomputable. Nevertheless, following [23], 
these equations can be written in the nonintegral 
form:  

𝑛𝑒,𝑖,𝑑 𝜇𝑒,𝑖,𝑑𝑇𝑒,𝑖,𝑑 = − 

(𝑚𝑒 ,𝑖,𝑑𝑘𝑇𝑒,𝑖,𝑑 )2

 2𝜋3/2Ћ3

𝐿𝑖3
2

(− exp  
𝜇 𝑒 ,𝑖,𝑑

𝑘𝑇𝑒,𝑖,𝑑
 )
  ,       (8) 

𝑃𝑒,𝑖 ,𝑑 𝜇𝑒,𝑖,𝑑𝑇𝑒,𝑖,𝑑 = − 

(𝑚𝑒,𝑖,𝑑𝑘𝑇𝑒,𝑖,𝑑 )5/2

 2𝜋3/2Ћ3𝑚𝑒,𝑖,𝑑

𝐿𝑖5
2

(− exp  
𝜇 𝑒 ,𝑖,𝑑

𝑘𝑇𝑒,𝑖,𝑑
 )

  ,       (9) 

Where 𝜇𝑒,𝑖,𝑑 is the chemical potential and 

𝐿𝑖𝑣  … ? ? ?   are the polylogarthms [22],[23]. 
 

Linear theory of ionic sound waves 
We derive the dispersion equation for ionic sound 
waves in the given model of the plasma. Let us 
assume a small harmonic wave perturbation to be a 
dependent variable of ion dynamics equations (1), 
(4), (6) and (7) relative to unperturbed values of 
these variables: 

𝑛𝑖 = 𝑛𝑖 0 + 𝑛𝑖
≀𝑒𝑗(Κ𝑥−𝜔𝑡 ) ,                                   (10) 

𝑉𝑖 = 𝑉𝑖
≀𝑒𝑗 (Κ𝑥−𝜔𝑡 ),                                              (11) 

𝜑 = 𝜑≀𝑒𝑗 (Κ𝑥−𝜔𝑡 ),                                              (12) 

𝜇𝑖 = 𝜇𝑖 0 +𝜇𝑖
≀𝑒𝑗 (Κ𝑥−𝜔𝑡 ) ,                                   (13) 

Where Κ and 𝜔 are the wavenumber and frequency 

of the perturbed quantities and the harmonic 
perturbation propagates along the 𝑥 direction with 

the phase velocity, 𝑉 = 𝜔/Κ, and 𝑗 =  −1 . 
For small perturbation with the unperturbed values 
𝑛𝑖 0 and 𝜇𝑖 0 formula (8) should take the form 

𝑛𝑖 = 𝑛𝑖 0 −  

(𝑚 𝑖𝑘𝑇𝑖0)3/2

 2𝜋3/2𝑚 𝑖Ћ
3

𝐿𝑖1
2

(− exp  
𝜇 𝑖0
𝑘𝑇𝑖0

 )
 (

𝜇 𝑖
≀

𝑘𝑇𝑖0
)𝑒𝑗(Κ𝑥−𝜔𝑡 ) ,                    

(14) 
Comparing (10) and (14), we obtain  

𝜇𝑖
≀ =

 2𝜋3/2𝑚 𝑖Ћ
3

(𝑚 𝑖𝑘𝑇𝑖0 )3/2  𝑛𝑖 0𝑘𝑇𝑖0𝐿𝑖1
2

(−exp 
𝜇 𝑖0

𝑘𝑇𝑖0
 )

𝑛𝑖

𝑛𝑖0
 , 

(15) 

Taking into account equation (15) and by 
substituting equations (10)- (13) into the initial 
equations of the problem, the following dispersion 
relation can be obtained as a result of the standard 

linearization procedure: 
𝜔 𝑖0

2

Κ2 /[ 
𝜔

Κ
)2 − 𝑉𝐹𝐷𝑖

2  =
1

Κ2 [
1

𝜆𝐷𝑑
2 +

1

𝜆𝐷𝑒
2 ] ,                (16) 

Where 𝜔𝑖0
2 = 4𝜋𝑞𝑖 

2𝑛𝑖0/𝑚𝑖 and the formulae for 

the Debye lengths of the electron and ion Fermi 
gases were found in [22] and [23].  

𝑉𝐹𝐷𝑖
2 = 𝜔𝑖0

2 𝜆𝐷𝑖
2 = (

𝑘𝑇𝑖0

𝑚 𝑖
[𝐿𝑖1

2

(−exp  
𝜇 𝑖0

𝑘𝑇𝑖0
 )]/

𝐿𝑖32 −exp𝜇𝑖0𝑘𝑇𝑖0) ,                                            

(17)  
Where 𝑉𝐹𝐷𝑖

2 is the square of the ion thermal velocity 

of the Fermi- Dirac gas. The formulae for the 
Debye lengths of the electron and ion Fermi gases 
were derived in [23]. In the present study, these 
formulae will be written and by the same way it’s 

derive for dust. 
 The square of the ionic Debye length is given by: 

𝜆𝐷𝑖
2 =

𝐿𝑖3
2

(−𝑒𝑥𝑝
𝜇 𝑖0
𝑘𝑇𝑖0

)𝑘𝑇𝑖0

𝐿𝑖1
2

(−𝑒𝑥𝑝
𝜇 𝑖0
𝑘𝑇𝑖0

)4𝜋𝑞𝑖
2 𝑛𝑖0

 ,                              (18) 

The square of the electron Debye length is 

𝜆𝐷𝑒
2 =

𝐿𝑖3
2

(−𝑒𝑥𝑝
𝜇 𝑒0
𝑘𝑇𝑒0

)𝑘𝑇𝑒0

𝐿𝑖1
2

(−𝑒𝑥𝑝
𝜇 𝑒0
𝑘𝑇𝑒0

)4𝜋𝑞𝑒
2 𝑛𝑒 0

,                             (19) 

 
 
And the square of the dust grain Debye length is 

𝜆𝐷𝑑
2 =

𝐿𝑖3
2

(−𝑒𝑥𝑝
𝜇 𝑑0
𝑘𝑇𝑑0

)𝑘𝑇𝑑0

𝐿𝑖1
2

(−𝑒𝑥𝑝
𝜇 𝑑0
𝑘𝑇𝑑0

)4𝜋(𝑛0𝑑 𝑧0𝑑)2 𝑛0𝑑

 ,                   (20) 

 
It appears that, Equation (16) describes the 
dispersion relation for ionic sound waves and 
allow us to find the range of periodic waves and 

ionic sound solutions.  
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Figure 1 𝝎 versus K 

By plotting curve between 
 𝜔 𝑎𝑡 𝑦 𝑎𝑥𝑖𝑠 𝑎𝑛𝑑  Κ at x axis, an agreement with 

[22] was found with modification due to dusty 
plasma instead of positron and a shape typical of 
ionic sound and consists of three parts. The mid 

wave number and mid wavelength segments 
correspond to ion plasma oscillations with a group 
velocity substantially smaller than 𝑉𝑠 and is 

followed by the higher wave number and short 
wavelength segment. While the second area 
between 𝜔 = 𝑉𝑠Κ  and 𝜔 = 𝑉𝐹𝐷𝑖Κ  are modified 

due to the presence of dust particles.  
 
Note; some taken concepts related to the equations 
are rewritten at the index.  
 

Conclusion 

In this article, A collisionless nonmagnetized dusty 
plasma consisting of quantum gases of electrons, 
ions, and dust at nonzero temperatures is 
considered, the dispersion relation has been 
studied by applying Sagdeev’s pseudopotential 
approach in an unmagnetized quantum dusty 
plasma together with the Poisson equation. The 

authors obtained and analyzed an exact solution to 
the initial equations. The dispersion equation for 
isothermal ionic sound waves is derived and 
analyzed, and the expression is obtained for the 
linear velocity of ionic sound. A graph plotted 
between the frequency and wave number, the 
ranges of phase velocities of periodic ionic sound 

waves and soliton velocities are determined. It is 
shown that in the plasma under investigation, 
Fermi pressure of electrons, and Bohm potential 
due to the quantum effects are taken into account. 
The quantum force increases and thus further 

increase in the group speed as well as the phase 
speed of the dust acoustic wave. Also it is found 
that the term of dusty plasma more affect in the 
dispersion and in the range of velocities from. 𝑉𝐹𝐷𝑖   
to  𝑉𝑠 . The application of this work has been 

pointed out for laboratory as well as for space 
dusty plasmas. 
 
Index 

For one dimension (1D) the pressure  𝑃 =
2𝜀𝐹

5
(
𝑛

𝑛0
)5/3 and for (3D) the pressure is 

 𝑃 =
2𝜀𝐹

3
(
𝑛

𝑛0
)3. 

Where 𝑛 is the concentration, 𝑛0 is the initial 

concentration, and 𝜀𝐹  is the Fermi energy. 

The authors used the following notations: electron 
mass and electron temperature, 𝑚𝑒 , 𝑇0𝑒  , ion mass 

and ion temperature, 𝑚𝑖,𝑇0𝑖  , and dust grain mass 

and dust grain temperature, 𝑚𝑑,𝑇0𝑑  respectively. 

Also,  𝜆𝐷 𝑒,𝑖,𝑑 ≫ 𝜆𝑑𝐵 𝑒,𝑖,𝑑  de Broglie wavelength 

and, 𝜆𝑑𝐵 𝑒,𝑖,𝑑 ≪ 𝐿 the characteristic size of the 

system. Ћ2𝜔0𝑒,𝑖,𝑑 ≪ 𝑘𝑇𝑒,𝑖 ,𝑑  , where 𝜔0𝑒,𝑖,𝑑  are the 

Langmuir frequencies of the plasma components. 
We assume that 𝑇𝑠 = 𝑇0𝑠  = constant for: 𝑒, 𝑖, 𝑑 =
𝑠. 

 
References 
1-W. H. Lee, E. Ramirez_Ruiz, and D. Page, Astrophys. 

J. 632, 421 (2005). 

2-F. C. Michel, Rev. Mod. Phys. 54, 1 (1982). 

3-M. C. Begelman, R. D. Blandford, and M. J. Rees, 

Rev. Mod. Phys. 56, 255 (1984). 

4-B. Kozlovsky, R. J. Murphy, and G. H. Share, 

Astrophysics. J. 604, 892 (2004). 

5-A. E. Dubinov and M. A. Sazonkin, Plasma Phys. 
Rep. 35 (1), 14 (2009). 

6-A. E. Dubinov and A. A. Dubinova, Plasma Phys. 

Rep. 34 (5), 403 (2008). 

7-7-Ch. Rozina
1
, M. Jamil

2
, Arroj A. Khan

2
, I. Zeba

1
, 

and J. Saman
 , 

Physics of Plasmas 24,   093702 

(2017); 

8-F. Sayed
1
, S. V. Vladimirov

1,2,3
, and O. Ishihara; 

Physics of Plasmas 22, 083708 (2015). 

9-P.K.Shukla
a1

L.Stenflo; Physics Letters A, Volume 

355, Issues 4–5, 10 July 2006, Pages 378-380 

10-S. Ali, P. K. Shukla; The European Physical Journal 

D 41(2):319-324, 2007. 

11-F. Haas, G. Manfredi, and M. R. Feix, Phys. Rev. E 

62, 2763 (2000). 

12-F. Haas, L. G. Garcia, J. Goedert, and G. Manfredi, 

Phys. Plasmas 10, 3858 (2003). 

13-F. Haas, Phys. Plasmas 12, 062117 (2005). 

14-L. G. Garcia, F. Haas, L. P. L. de Oliviera, and J. 
Goedert, Phys. Plasmas 12, 012302 (2005). 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.001 0.004 0.006 0.008 0.01 0.012 0.014

𝜔=𝑉_𝑠K

𝜔=𝑉_𝐹𝐷𝑖K

https://aip.scitation.org/author/Rozina%2C+Ch
https://aip.scitation.org/author/Jamil%2C+M
https://aip.scitation.org/author/Khan%2C+Arroj+A
https://aip.scitation.org/author/Zeba%2C+I
https://aip.scitation.org/author/Saman%2C+J
https://aip.scitation.org/author/Sayed%2C+F
https://aip.scitation.org/author/Vladimirov%2C+S+V
https://aip.scitation.org/author/Ishihara%2C+O
https://www.sciencedirect.com/science/article/abs/pii/S0375960106003239#!
https://www.sciencedirect.com/science/article/abs/pii/S0375960106003239#!
https://www.sciencedirect.com/science/journal/03759601
https://www.sciencedirect.com/science/journal/03759601/355/4
https://www.sciencedirect.com/science/journal/03759601/355/4
https://www.researchgate.net/profile/S_Ali5?_sg=w4KJ_Dw4cQfj7MrPu8K_HNlS0Ld2O46Z2XzqXahLAKRZhuTS7YgSoL7RvJAmtjiYMQshQSg.mUQzzIJrE8jmv9okhvfzA42hrIm4uQctJ0QDZfLEFfqJeqDP59CR4oSPVRAW84S7sc-G_s-tt5x3d7Kvd2qJzQ
https://www.researchgate.net/scientific-contributions/2014183713_P_K_Shukla?_sg=w4KJ_Dw4cQfj7MrPu8K_HNlS0Ld2O46Z2XzqXahLAKRZhuTS7YgSoL7RvJAmtjiYMQshQSg.mUQzzIJrE8jmv9okhvfzA42hrIm4uQctJ0QDZfLEFfqJeqDP59CR4oSPVRAW84S7sc-G_s-tt5x3d7Kvd2qJzQ


Arab J. Nucl. Sci. & Applic. Vol. 52, No. 3 (2019) 

HOT QUANTUM ELECTRON... 
125 

         

 

15-G. Manfredi and F. Haas, Phys. Rev. B: Condens. 

Matter 64, 075316 (2001). 

16-Manfredi. V,  Fields Inst Commun 46:263–287, 

(2005). 

17-Suh N, Feix MR, Bertrand P. J Comput Phys 

94:403–418, (1991).  

18-Madelung E. , Z Phys 40:332–336, (1926). 

19-Gardner CL, Ringhofer C. Phys Rev E 53:157–168, 

(1996). 
20-Fathalian A, Nikjo S, Phys Plasmas 17:103710, 

(2010). 

21-Wang Y, Zhou Z, Qiu H, Wang F, Lu Y , .Phys 

Plasmas 19:013704, (2012) 

22-A. E. Dubinov and M. A. Sazonkin. Journal of 

experimental and theoretical physics, 111, 5, 865-

876, (2010). 

23-23 -A. E. Dubinov, A. A. Dubinova, and M. A. 

Sazonkin, J.Commun. Technol. Electron. 55, 

907(2010). 

24-24- W F El-Taibany, N M El-Siragy, E E Behery, A 

A Elbendary and R M Taha;  Indian J Phys. 

92(5):661–668. (2018). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


