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The present study reconsiders the formula of the Liquid Drop Model (LDM) in addition 

to updating the terms of the energy parameters represented by the term of volume, 

surface, coulomb, asymmetry and pairing. This was performed using the least-squares 

method (LSM) by means of a computer program in the Fortran language to match the 

nuclear binding energy for more than 480 different nuclei, including the magic nuclei of 

the range (2 ≤ Z ≤ 92). A mathematical term represented by the closed shell term, in 

addition to the energy terms above, was derived once by the difference between the 

separation energy of protons and neutrons and again by the method of valence nucleons, 

which represents the highest energy level in any nucleus because it is the only energy that 

participates in spinning the nucleus. New energy parameters were obtained specifically 

for the Liquid Drop Model which enabled us to determine the theoretical nuclear binding 

energy in a good match with its experiment values for most of the nuclei used, especially 

the magical nuclei. The standard deviation (σ ) was used as a statistical tool to determine 

the extent to which the model can be adopted to explain the behavior of the magic nuclei, 

in addition to the high accuracy in determining the theoretical nuclear binding energy. 

The value of the standard deviation  ( σ = 0.126 ) and (σ=0.144) for the two updated 

formulas of the model were the generalized liquid drop models  (GLDM)₁ and (GLDM )₂, 

respectively. 
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1. INTRODUCTION 

The fundamental understanding of nuclear 

properties, such as the explanation of fission and fusion 

processes, nuclear force saturation, and the existence of 

pairing, was paved by describing the nuclear mass by 

the (LDM) [1]. At the same time, we state that the 

(LDM) gives an approximation suitable for atomic 

masses and a variety of other phenomena, but it does 

not explain the appearance of magic numbers. 

 Cohen and 𝑆𝑤𝑖𝑎𝑡𝑒𝑐𝑘𝑖 [2] showed that the LDM 

presented by Bohr and Wheeler [3] is unable to explain 

why peaks in the binding energy curve occur at certain 

values for protons (Z) and neutrons (N). Nuclei in which 

the number of Z or the number of N or both is equal to 

the magic numbers (2,8,20,28,50,82,126) which are 

more stable than the others. Magic numbers have been 

interpreted as including closed shells of Z and N in 

nuclei, similar to filling electron shells in atoms. The 

experimental evidence that supports the existence of 

nuclear shells is the separation energies of Z or N, as the   

separation energies gradually increase with the number 

of Z and the number of N, except for certain numbers of 

Z and N (magic numbers), where sharp drops or sudden 

changes in the separation energy occur, which can be 

explained only based on the presence of nuclear shells 

[4]. The LDM's projected binding energies are lower 

than the actual binding energies of "magic nuclei." For 

example, the LDM predicts a binding energy of 

477.7 𝑀𝑒𝑉 for nickel ( 𝑁𝑖)28
56 , but the measured value is 

484.0 𝑀𝑒𝑉, and the LDM predicts a binding energy of 

1084 𝑀𝑒𝑉 for tin( 𝑆𝑛50
132 )  , while the actual value is 
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1110 𝑀𝑒𝑉. Therefore, it has become necessary to think 

seriously to investigate new terms that represent the term 

of closed shell, which can be positively reflected on the 

suitability of the nuclear binding energy theoretically 

when balancing it with its experimental values. This will 

lead to a deeper understanding and a more accurate 

perception of nuclear structures, especially the magic 

nuclei. This can be obtained through the difference 

between the separation energies of Z and N, as well as 

the valence nucleons that carry a specific spin that would 

contribute to the fit of the nuclear binding energy. 

As we know, the binding energy in the LDM is 

represented as a function of mass number and atomic 

number using five energy coefficients (volume, surface, 

coulomb, asymmetry, and pairing), where numerical 

methods are used to produce a new coefficient of energy 

parameters for the Semi-Empirical mass formula 

(SEMF).  Among these methods is the method of (LSM), 

which is one of the most common methods of fitting 

data. Other researchers [5] added two terms for closed 

shells when generalizing the LDM to clarify the effects 

of closed shells on calculating the alpha decay energy 

(Qα) of heavy nuclei. A previous [6] suggests that the 

separation energies are used to predict new vacuoles in 

the shell. Hirsch et al.[7] used the three formulas of the 

LDM to describe the nuclear masses. They also studied 

the coefficients of the three models and showed that the 

inclusion   of   shell   effects   allows   a   better fit. Cakirili 

et al.[8] studied the separation energies and their 

relationship to the closed shell. . In another study[9] an 

LDM has been developed to calculate nuclear binding 

energy for (Z=50), and then compare the results with the 

original model and show that the error rate does not 

exceed 1.64%. Ankita and Suthar[10] used different 

parameters of the LDM, calculating the experimental 

binding energies by SEMF and comparing the values 

with the experimental data. An earlier publication[11] 

revealed a second development of   the   LDM   to   define 

a new concept regarding nuclear stability and binding 

energy. Chanda[12] conducted a study on the nuclear 

binding energy of highly stable nuclei using the LDM, in 

addition to trying to explain the reason for the high 

binding energy at magic numbers. Other researcher [13] 

proposed a new model based on the LDM in calculating 

the rate of nuclear potential that mediates the 

relationship between the nuclear core and neutron (N) at 

the surface. Karthika et.al.[14] studied the "magic 

property" of light nuclei using nuclear separation 

energies. Based on the LDM and taking into account the 

correction of the shell, other scientists [15] proposed       

a formula for calculating the energy emitted by the 

radioactivity of the Z. Many researchers 

[16,17,18,19,20,21] use the LSM to obtain a new set of 

coefficients for an LDM. 

The present research aims at adding a theoretical 

mathematical term to the LDM, which represents         

the term of the closed shells of the magic nuclei. This 

was conducted through a mathematical derivation      

based on the difference between the separation energies 

of  the Z and N, which is a nuclear binding energy      

that is added to the magic nuclei to increase their 

binding energy in addition to another mathematical 

method based on the valence nucleon number of Z and 

N, which represent the highest energy level in the 

nucleus. This is in addition to a suitable work for the 

coefficients of volume, surface, coulomb repulsion, 

asymmetry and pairing in the LDM by the LSM. This 

was performed by designing a code in the Fortran 95 

program for 480 different nuclei, including magic 

numberswithin the (2 ≤ 𝑍 ≤ 92) range, in order to 

correct the values of nuclear binding energy, especially 

for magic nuclei, and balance them with experimental 

values. 

2. THEORETICAL FRAMEWORK 

2.1 Liquid Drop Model (LDM) 

The LDM was developed by Von Weizsäcker [22] 

according to the essential assumption that the nucleus 

may be thought of as a drop of incompressible material 

which arises because the internal density is 

approximately equal. The interaction between nucleons 

is strong, and the binding energy of the nucleus - 

according to the LDM is linearly dependent on its mass 

number (the volume of the nucleus). Moreover, 

Nucleons on the nucleus' surface can react with nucleons 

deep within the nucleus. Therefore, their binding energy 

is lower than the rest. Furthermore, the Z has a coulomb 

repulsion force among themselves that would reduce the 

binding energy of the nucleus in general. Increasing the 

number of N to the number of Z would create higher 

energy levels, which would negatively affect their 

binding energy. Therefore, most stable arrangement 

contains equal numbers of Z and N. In addition, the 

pairing term raises the binding energy of the nucleus 

when the nucleons are paired in the form of pairs, 

meaning that the nucleus is even-even, unlike the odd-

odd nucleus. 
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  The   nuclear   binding   energy   can   be   written    as 

a function of the mass number A and the atomic 

number Z based on the LDM as follows[4]: 

𝐵(𝐴, 𝑍) = 𝑎𝑣𝐴 − 𝑎𝑠𝐴
2
3 − ɑ𝑐

𝑍2

𝐴
1
3

− ɑɑ

(𝐴
2
−𝑍)2

𝐴
 + 𝑎𝑝𝐴

−1
2  (𝟏) 

Where  (𝑎𝑣, 𝑎𝑠, 𝑎𝑐 , 𝑎𝑎 , 𝑎𝜌) represents the term of volume, 

surface,   coulomb,   asymmetry,   and pairing term,[16] 

respectively, and their values 

𝑎𝑟𝑒 (14.8, 16.8, 0.703, 28.8, 11.2), respectively. 

2.2 Least-Squares Method (LSM) 

The LSM is based on minimizing the amount of error 

(ℰ) in calculating the coefficients of volume, surface, 

coulomb, asymmetry, and pairing in the LDM especially 

when taking different types of nuclei as an extension of 

super-mass nuclei or when adding newly discovered 

nuclei. The quantity (ℰ) is represented by the following 

equation:                

ℰ = ∑(𝑦𝑖 − 𝐵(𝑍𝑖 , 𝐴𝑖))
2

𝑖

= ∑(𝑦𝑖 − 𝐵𝑖(𝑎𝑣, 𝑎𝑠 , 𝑎𝑐 , 𝑎𝑎 , 𝑎𝜌) )
2

𝑖

 (𝟐) 

 Where (𝑦𝑖 ) is empirical value for the binding energy of 

the nucleus, and (𝐵𝑖)  is the theoretical binding energy 

obtained from the equation (1). In other words, there is a 

possibility to obtain the coefficients of volume, surface, 

coulomb, asymmetry, and pairing by minimizing the 

function (ℰ). In other words, its first derivative must 

equal to zero. 

𝜕ℰ

𝜕𝑎𝑣

= 0,
𝜕ℰ

𝜕𝑎𝑠

= 0,
𝜕ℰ

𝜕𝑎𝑐

= 0,
𝜕ℰ

𝜕𝑎𝑎

= 0,
𝜕ℰ

𝜕𝑎𝜌

= 0      (𝟑) 

Through     equation     (3),    we    get    the    matrix 

equation (4) 
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The matrix equation above represents a set of the 

linear equation of five variables, which were solved by 

the Gauss's method using a computer program written in 

Fortran 95 which fits several coefficients as terms of the 

LDM down to seven coefficients when adding a new 

term represented by the shell term. The values of these 

coefficients were tabulated for the terms of volume, 

surface, coulomb, asymmetry and pairing in the new 

formula of the LDM. The results we obtained from this 

method are explained by equation (5), and the equation 

of the LDM becomes as follows:  

𝐵(𝐴, 𝑍) = 15.81 𝐴 − 18.55 𝐴
2
3 −   0.715

𝑍2

𝐴
1

3⁄
−

23.59
(
𝐴

2
−𝑍)

2

𝐴
±  14.7𝐴−1

2         (𝟓)     

Due to the terms of the new energy coefficients 

obtained from the above equation, it was found out that 

they differ from their counterparts in the equation (1), 

and that this difference depends on the number of the 

nuclei used to fit the coefficients of the LDM. 

2.3 Derivation of Shell Term for Magic Nuclei 

Until now, the LDM in its present form is an 

incomplete structure, despite the discovery of the new 

nuclei. Although many improvements have been made 

over the years, this formula does not give an explanation 

for magic nuclei, whether in the number of Z or N.  Most 

of the nuclear properties show differences near certain 

values of the number of Z and N. Experimental facts 

indicate that nuclei are more stable at those numbers, 

which form closed shells for Z and N. And the stability 

of the magic nuclei is greater than the stability of the 

neighboring nuclei. The experimental evidence that 

supports the existence of the nuclear shells separation 

energies of Z and N measured in the form of sharp 

deviations from the expected values so that the effects of 

closed shells appear more clearly [23]. According to the 

difference between the energies separating Z and N, as 

[24]:    

𝑆𝑝 = 𝐵(𝐴, 𝑍) − 𝐵(𝐴 − 1, 𝑍 − 1)                                (𝟔) 

𝑆𝑛 = 𝐵(𝐴, 𝑍) − 𝐵(𝐴 − 1, 𝑍, 𝑁 − 1)                           (𝟕) 

Where 𝑆𝑝, 𝑆𝑛 𝑎𝑟𝑒  the separation energy of Z and N, 

respectively. According to the LDM as in equation (1), 

the difference between the energy of separation of Z and 

N is as follows: 

𝑆𝑝 − 𝑆𝑛 = −𝑎𝑣(𝐴 − 1) + 𝑎𝑠(𝐴 − 1)
2
3 + 𝑎𝑐
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2
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2
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2
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3
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(
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2
− 𝑍)2

𝐴 − 1
 + 𝑎𝑝(𝐴 − 1)−

1
2
        (𝟖) 

𝑆𝑝 − 𝑆𝑛 = −𝑎𝑐(2𝑍 − 1)(𝐴 − 1)−
1
3    + 𝑎𝑎(𝐴 − 2𝑍)(𝐴 − 1)−1   (𝟗) 

For stable nuclei, we use the following relationship [24]: 

𝑍 ≈
𝐴

2
(1 −

𝑎𝑐

𝑎𝑎
 𝐴

2
3) 

 𝑆𝑝 − 𝑆𝑛 =
𝑎𝑐

𝐴 − 1
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5
3 − (𝐴 − 1)

5
3   +
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𝑎𝑎
 𝐴

5
3(𝐴 − 1)

5
3]  

𝑆𝑝 − 𝑆𝑛 ≈
𝑎𝑐

𝐴 − 1
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𝑎𝑐

𝑎𝑎
 𝐴

5
3(𝐴 − 1)

2
3 + 𝐴

5
3
        − (𝐴

− 1)
2
3(𝐴 − 1)]                                      (𝟏𝟎) 

When the mass number is more than one, the following 

approximation can be used: 

𝐴 ≫ 1, 𝐴 − 1 = 𝐴 

𝑎𝑐 = 0,715 𝑀𝑒𝑉, 𝑎𝑎 = 23.59 𝑀𝑒𝑉 

∴  𝑆𝑝 − 𝑆𝑛 = 0.0217 𝐴
4
3 𝑀𝑒𝑉  

                   =  𝑎𝑠ℎ𝐴
4
3 𝑀𝑒𝑉               (𝟏𝟏)   

Where 𝑎𝑠ℎis the shell constant. 

When equation (11) is added to equation (5), we get a 

new update of the (LDM) that deals with magic nuclei 

along with all other nuclei. 

𝐵(𝐴, 𝑍) = 15.81 𝐴 − 18.55 𝐴
2
3 − 0.715

𝑍2

𝐴
1
3

  

− 23.59 
(𝐴
2
− 𝑍)2

𝐴
± 14.7 𝐴−1

2   

+ 0.0217 𝐴
4
3                                        (𝟏𝟐) 

When applying the above equation to all the nuclei under 

study, it was shown that the theoretical values are close 

to the experimental values with an acceptable deviation 

rate. It is worth noting that the above equation is 

symbolized by the generalization LDM (GLDM)₁ 
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2.4 Adding a Correction Term to the Shell 

The effects of magic numbers have long been the 

focus of the nuclear microscopic theory. Several 

methods for dealing with these effects have been 

proposed in the literature, but there is no known general 

dependence for Z and N, which could constitute an 

additional term in the Semi-Empirical mass formula 

(SEMF). The corrective term that will be adopted in the 

present study is the valence nucleon coefficient [25, 26], 

which is largely unrelated to other SEMF terms. 

𝐵𝑠ℎ𝑒𝑙𝑙(𝑁𝑛 ,𝑁𝑃) = 𝑎𝑠ℎ1𝑃 + 𝑎𝑠ℎ2𝑃
2                        (𝟏𝟑) 

where 𝑃 = (𝑁𝑛𝑁𝑝)/(𝑁𝑛 + 𝑁𝑝), and( 𝑁𝑛 , 𝑁𝑝),  represent 

N and Z valence, which are located in the last energy 

levels and in turn participate in spinning the nucleus. 

When these two terms are added to the SEMF, they 

become as follows: 

𝐵(𝐴, 𝑍) = 𝑎𝑣𝐴 − 𝑎𝑠𝐴
2
3 − 𝑎𝑐

𝑍2

𝐴
1
3

   − 𝑎𝑎

(𝐴
2
− 𝑍)2

𝐴
± 𝑎𝑝𝐴

−1
2   

− 𝑎𝑠ℎ1𝑃 + 𝑎𝑠ℎ2𝑃
2                   (𝟏𝟒) 

By fitting the coefficients of this formula using the LSM 

for only 261 magic nuclei, a new form of the equation 

could be obtained(14) 

. 

𝐵(𝐴, 𝑍) = 14.2 𝐴 − 15.3 𝐴
2
3 − 0.57 

𝑍2

𝐴
1
3

  − 19.4 
(𝐴
2
− 𝑍)2

𝐴

± 12 𝐴−1
2  − 0.63 𝑃 + 1.74 𝑃2          (𝟏𝟓) 

    When applying the above equation to all the nuclei 

under study, the theoretical values approached the 

experimental with a very acceptable deviation rate. The 

equation shall be symbolized by the generalized LDM 

(GLDM)₂. 

2. 5 Determining the Standard Deviation of the 

Proposed Models 

In order to determine the accuracy of the two equation 

(12),(15), and compare them with the experimental 

results, the standard deviation was calculated [27]. 

   σ= ∑
|𝐵𝐸𝑒𝑥𝑝−𝐵𝐸𝑡ℎ𝑒𝑜|

𝑁
                                       (𝟏𝟔)       𝑁

𝑖=1  

𝐵𝐸𝑒𝑥𝑝 : representing experimental values. 

𝐵𝐸𝑡ℎ𝑒𝑜: representing theoretical values. 

3. RESULTS AND DISCUSSION 

Table (1) shows the values of the coefficients obtained 

when fitting equations (1), (14), according to (GLDM)₁, 

(GLDM)₂, respectively 

Table (1): The values of the coefficients energy from  fitting equations (1), (14), according to (GLDM)₁, 

(GLDM)₂, respectively 

𝒂𝐬𝐡𝟐 𝒂𝐬𝐡𝟏 𝒂𝐩 𝒂𝐚 𝒂𝐜 𝒂𝐬 𝒂𝐯 Models 

___ __ 14.7231 23.59992 0.71462 18.54563 15.8136 (GLDM)₁ 

1.7499 0.63938 12.0301 19.42074 0.57864 15.29089 14.1910 (GLDM)₂ 
 

Table (2): The comparison of the coefficients that we obtained by the LSM for both models (GLDM)₁, 

(GLDM)₂, with a set of different values of the coefficients that were calculated in the previous 

works in a similar way 

𝒂𝐬𝐡𝟐 𝒂𝐬𝐡𝟏 𝒂𝐩 𝒂𝐚 𝒂𝐜 𝒂𝐬 𝒂𝐯 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕𝒔 (𝑴𝒆𝑽) 
__ __ 12.00 23.21 0.71 18.34 15.78 Ref. [16] 
__ __ __ 24.58 0.67 17.48 15.52 Ref. [19] 
__ __ 11.54 21.07 0.64 14.08 14.64 Ref. [20] 
__ __ _ 23.03 0.70 16.96 15.55 Ref. [21] 
__ __ 14.7 23.59 0.71 18.55 15.81 Present Work(GLDM)₁ 

1.74 0.64 12.03 19.42 0.58 15.29 14.19 Present Work(GLDM)₂ 
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It is shown that the range of the accuracy finiteness 

for both methods used in the research when matching the 

values of the coefficients to the LDM is shown in the 

Table above when comparing the obtained values with 

the values of previous works. As for the coefficients that 

were reached for the model (GLDM)₂, they can be relied 

upon, especially in obtaining a standard deviation of no 

more than (0.144) as in Table (3), when the theoretical 

values of the binding energy of magic nuclei after adding 

two valence nucleons are compared to the experimental 

values 

Figure (1) shows a comparison between the average 

experimental binding energy and the average theoretical 

binding energy obtained from equation (5) for all the 

studied nuclei 

 
Fig. (1): A comparison between the average experimental 

binding energy and the average theoretical 

binding energy obtained from equation (5) for all 

the studied nuclei. 

From Figure (1), it is shown that the theoretical 

binding energy obtained from equation (5) and using the 

coefficients calculated using the (LSM) is very 

compatible with the experimental values, especially at 

medium and heavy nuclei (except for some heights at 

(A=100,140,200), due to the presence of magic numbers 

in these regions, as equation (5) does not take into 

account the effect of the shell. So, when adding the shell 

term to the equation of the (LDM), these differences 

disappear. As for the (𝐴 ≤ 20 ) region, there is an 

acceptable discrepancy with the experimental values. 

Figures (2 and 3) show the the difference between the 

experimental binding energy and the theoretical binding 

energy in the presence of the shell-term with the mass 

number A and atomic number Z of a model (GLDM)₁ 

for the studied nuclei within the range (2 ≤ 𝑍 ≤ 92) and 

a model (GLDM)₂, for magic nuclei only, respectively. 

 
Fig. (2): The difference between the experimental and 

theoretical binding energy in the presence of the 

shell term with the mass number and atomic 

number according to the model (GLDM)₁ for all 

studied nuclei 

 
Fig. (3): The difference between the experimental and 

theoretical binding energy in the presence of the 

shell-term with the mass number and atomic 

number according to the model (GLDM)₂, for all 

studied magic nuclei. 

It should be noted that the more the difference 

between the theoretical and experimental values is close 

to zero, the closer the model is to its adoption. It is clear 

from Figures (2 and 3), and for both models that the 

difference between the experimental and theoretical 

nuclear binding energy in the presence of the shell-term 
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and the valence nucleon term, respectively, is of high 

value for light nuclei of magic numbers, whether in the 

number of Z or the number of N in addition to the 

neighboring nuclei. While this difference decreases 

significantly and is centered around zero in the medium 

and heavy nuclei, this leads to an acceptable agreement 

with the experimental values. This indicates the 

possibility  of  adding the shell term represented by 

(𝑆𝑝 − 𝑆𝑛 = 𝑎𝑠ℎ𝐴
4
3 𝑀𝑒𝑉 ) and (𝑎𝑠ℎ1𝑃 + 𝑎𝑠ℎ2𝑃

2 ) to the 

LDM. The standard deviation included in Table (3) and 

for both models with the values (0.126),(0.144), 

respectively proves the validity of the assumption on 

which the mathematical derivation is built when adding 

that term, and thus the two models become 

complementary, especially in the values of the 

coefficients that were found through the fit process using 

the LSM. Looking back at the term shell in the model 

(GLDM)₁ it is noted that it depends on the hypothesis of 

the difference between the separation energy of Z and N, 

where Z and N are equal in light nuclei and it takes equal 

energy to separate a Z and N in light nuclei. While in 

stable heavy nuclei, the number of N is greater than the 

number of Z, so it needed a higher energy of separation 

for Z in equilibrium with N. All of these facts are based 

on the assumption that the nuclear force is approximately 

equal for each nucleon pair [23]. As for the shell term in 

the model (GLDM)₂, it depends on the valence nucleons 

of the closed shells of the magic nuclei. 

 
Fig. (4): The relationship between the shell term (𝐒𝐩 − 𝐒𝐧 ) 

with the mass number A and atomic number Z of 

all studied nuclei (𝟐 ≤ 𝐙 ≤ 𝟗𝟐 ) of the model 

(GLDM)₁ 

The result represented in the above Figure shows that 

the difference between the separation energies of Z and 

N (𝑆𝑝 − 𝑆𝑛 ) is proportional to the increase in the mass 

number of all nuclei in general. Separation energies are 

proven to reveal a wealth of information about the 

nuclear structure. They show the main shell closures at 

𝑃 = 𝑃 (𝑚𝑎𝑔𝑖𝑐 ) or 𝑁 = 𝑁 𝑚𝑎𝑔𝑖𝑐, which are 

represented by severe discontinuities in 𝑆𝑝, 𝑆2𝑝,

 𝑆𝑛 𝑎𝑛𝑑 𝑆2𝑛, as a function of Z and N. The development 

of nuclear collectivity is reflected in a smooth variation 

of separation energy as a function of N and Z [28]. 

The proton subshell closures are reflected in the 

behavior of separation energies due to their nature 

(proton-neutron interaction). If the major proton’s 

spherical shell closure does not influence the two 

neutron separation energies, the proton subshell closures 

are reflected in the behavior separation energies due to 

their nature (proton-neutron interaction). The numbers of 

Z and N are often equal in light, In stable heavy nuclei, 

the number of N  is  bigger  than  the  number  of Z.  As 

a result, the energy required to remove a Z or N in light 

nuclei is roughly identical. The energy required to 

remove a Z from a heavy nucleus, on the other hand, is 

more than that required to remove an N, and this energy 

rises as the mass number rises. The 𝑆𝑛 is the amount of 

energy required to break the nuclear bonds that hold the 

N in the nucleus. 𝑆𝑝 = 𝑆𝑣 − 𝑆𝑐 is made up of two parts. 

The nuclear part (𝑆𝑣) is equivalent to neutron separation 

and represents the energy required to break nuclear 

bonds; the coulomb part 𝑆𝑐 represents the additional 

effect of electrostatic repulsion between the Z and the 

remnant nucleus after the bonds have been broken. In 

heavy nuclei the following relation is obtained[29]:  

      
Sv > S

Sv − Sn ≅ Sc
} A > 50,                       (𝟏𝟕) 

This   relationship    (17)    indicates    that    breaking 

a proton's nuclear connection requires more energy than 

separating an N from a heavy nucleus (A > 50). 𝑆𝑐 is 

almost equal to the difference. To compensate for the 

electric repulsion energy, protons are more firmly bound 

by nuclear forces. Hence, proton emission (in 

comparison to neutron emission) is inhibited in heavier 

nuclei [29]. 



   157                                      Fitting the Nuclear Binding Energy Coefficients for Liquid Drop Model 

Arab J. Nucl. Sci. Appl., Vol. 55, 4, (2022)   

 

 

 
Fig. (5): The relationship between the shell term, 

represented in equation (13) and the mass 

number with atomic number , with the magic 

number of all magic nuclei understudy for the 

model (GLDM)₂ 

The above Figure shows how important it is to add 

the shell term  in  a  model  (GLDM)₂  to  the  LDM,  as 

a result of the added increase in the nuclear binding 

energy of magic nuclei, whether in the number of Z or 

number of N or both. This is reflected in the approach of 

the results with the experimental values of the binding 

energy. 

The valence nucleons that represent high energy 

levels will add another energy that will reflect positively 

on the magic nucleus binding energy, being the only one 

that participates in spinning the nucleus. For example, 

nuclei with atomic numbers (8,20,50) will increase their 

binding energy as the number of N in those nuclei 

increases, considering that they are isotopes belonging to 

a nucleus. This means that the increase in the number of 

N will be an additional energy gain for the nucleus. It 

should also be noted that the oxygen (𝑍 = 8,𝑁 = 7) and 

carbon (𝑍 = 7,𝑁 = 8) nuclei give very close values to 

the shell term, which is estimated at (2.21903𝑀𝑒𝑉), and 

the same is repeated with two nuclei calcium (Z=20, 

N=21) and scandium nucleus (Z=21, N=20) with values 

(10.773 MeV) because both of those nuclei contain 

magic numbers, either the number of N or the number    

of Z. It was found that the valence of the nucleon was 

able to improve the standard deviation from (0.323) to 

(0.144). This is due to the increase in the theoretical 

binding energy of the magic nuclei and getting it close to 

the experimental values, especially at the medium and 

heavy nuclei. Although this term is largely unrelated to 

the terms of the other formulation of SEMF, its relative 

contribution is very impressive. 

The standard deviation values indicate the possibility 

of adopting the two models in interpreting magic 

numbers. The results can be considered very acceptable 

due to the improvement shown by the first model by 

(33%) and by (55%) for the second model. The more 

accurate is the fit of the coefficients, the better are the 

results.           

 Figures (6,7) show the acceptable agreement of the 

average experimental nuclear binding energy, the 

theoretical values of the original LDM and the 

theoretical values of the proposed models. 

 

Fig. (6): The average nuclear binding energy with mass 

number A and atomic number Z for 

experimental and theoretical values of the 

original LDM and theoretical values of the 

models (GLDM)₁ which contains magic and non-

magic nuclei 

 

Table (3): The standard deviation values of the two models used before and after adding the shell term, along with the 

percentage of improvement that occurred in the two models 
 
 

 
 

 

 

Improvement 
rate 

Standard deviation( σ) 
with shell 

The model 
Standard deviation( σ) 

without shell 
The model 

33% 0.126 GLDM₁ 0.188 LDM₁ 

55% 0.144 GLDM₂ 0.323 LDM₂ 



  158                                                 Fadwa Fathallah Ahmad Al-dawdy  and  Firas Mohammed Ali Al-jomaily 

 

Arab J. Nucl. Sci. Appl., Vol. 55, 4, (2022)   

 

 

 

Fig. (7): The average nuclear binding energy with mass 

number A and atomic number Z for experimental 

and theoretical values of the original LDM and 

theoretical values of the model represented by 

magic nuclei only (GLDM)₂ 

 

Figure (7) shows, at first glance, that the rate of the 

nuclear binding energy does not show a sequential order 

as in the model (GLDM)₁, due to the fact that the model 

(GLDM)₂ deals the with magic nuclei only. It can be said 

in general, that there is an acceptable agreement for the 

rate of empirical nuclear binding energy with calculated 

theoretical values through the two models (GLDM)₁, 

(GLDM)₂. It could be noticed that the theoretical values, 

after adding the shell term, are close to the experimental 

values of two models (GLDM)₁,(GLDM)₂. This confirms 

the possibility of adopting the proposed shell-terms in 

the interpretation of the magic numbers for all the 

studied nuclei and a wide range, especially for the 

medium and heavy nuclei. It is observed that the actual 

increases in the binding energy of the magic numbers, 

led to the theoretical nuclear binding energy being 

remarkably close to the experimental values in addition 

to the values of the standard deviation and improvement 

percentage. This   is shown in Table (3) for the two 

proposed models from the original model, which 

indicates the possibility of adopting the two models. 

 4. CONCLUSION 

There is no doubt that the effect of the shell term on 

the LDM is very important. From the results, the 

following can be concluded: 

• The updates of the values of the coefficients of 

the LDM obtained through the LSM show their 

suitability with previous similar works. 

• The results obtained through the two proposed 

models in the interpretation of the magic 

numbers show that there are acceptable 

discrepancies between the experimental values 

and the theoretical values calculated in the 

current work. 

• The statistical relationships of the standard 

deviation showed the possibility of adopting the 

two models in the interpretation of magic 

numbers. 

• The two models (GLDM)₁, and (GLDM)₂, can 

be adopted because of the broad range of magic 

and non-magic nuclei that exceeded 480 nuclei.  

• The results show that as the mass number A of 

all nuclei increases, the shell term obtained in 

equation (11) increases as well. 
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