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The author of the present study has previously developed formulas to calculate the full 

Glauber series of the elastic scattering between two composite systems. Their structures 

are pictured as a bag of quarks or as a cluster of nucleons. In this work, a hybrid model in 

which the quark-hadron pictures are combined was constructed. The elastic cross sections 

of alpha-proton at center of mass energy √𝒔 = 𝟖𝟗 𝑮𝒆𝑽 and alpha-alpha  at √𝒔 = 𝟏𝟐𝟔 𝑮𝒆𝑽 

are evaluated by the hybrid model, the pure quark and conventional nucleon models. The 

results of different approaches are compared with the experimental data. The comparison 

shows that the predictions of the three model are identical at forward scattering angles and 

are significantly different at large momentum transfers.  At large angles, the hybrid model 

calculation fits very well the experimental data when compared the calculations of quark 

and nucleon models. The nucleon model prediction provides a better agreement with the 

data than the quark model calculation.  The improvement achieved by the hybrid model 

over the quark model, at large scattering angles, shows that the inclusion of quark–quark 

interactions is more consistent when the separation between the colliding nucleons is less 

than the hadron core. 
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 1. INTRODUCTION 

Elastic scattering between two composite particles at 

high energies is always one of the powerful tools to 

investigate the structure of their constituents. The 

experimental results of such interactions showed that the 

angular distributions measured at small scattering angles 

exhibit the trend of diffraction pattern resulting from the 

multiple scattering between the constituents of composite 

particles [1-13]. Furthermore, at large momentum 

transfers (𝑞) ,the differential cross sections decay to 

values many orders of magnitude smaller than those in the 

forward direction [14-17]. Moreover, with the aid of the 

present-day accelerators such collisions are performed at 

ultra-relativistic energies and their cross sections are 

measured over wider ranges of momentum transfers [18-

28].  The recent data are also having the same 

characteristics but with various degrees depending on the 

values of incident energy and constituent number of the 

colliding systems. Surely, data available with such details 

are very useful to test more rigorously the theoretical 

models concerned and their ranges of validity.  

    As for the situation concerning the theories, different 

phenomenological models have been developed to study 

the elastic cross sections of such experimental data.  

Indeed, until this moment no model manages to describe 

qualitatively and quantitatively the large amount of data 

exist; they all have merits and shortcomings. Typically, 

they successfully describe the experimental results in         

a certain kinematic range, but completely fail in other 

ones.  

   The Glauber multiple scattering theory [29-31] is one 

of these models which has been developed to describe 

such collisions at high-energies.  Although Adachi and 

Kotani [32-37] and Islam [38, 39] have derived more 

admissible formulas of  the elastic scattering amplitude  

accounting as well for region of 𝑞 values delivered at 

finite collision energies, still the Glauber high energy 

formula of the scattering amplitude are extensively 

applied. In fact, the Glauber analysis is more attractive 

because the scattering amplitude representing the 

collision between two composite particles is simply 

expressed by the multiple scattering between their 

constituents. Second, practically speaking, this model 

(E S N S A)     ISSN 1110-0451 

Arab Journal of Nuclear Sciences and Applications 

 

Web site: ajnsa.journals.ekb.eg 

Corresponding author: m_elgogary@yahoo.com  
DOI:  10.21608/ajnsa.2021.64561.1451 
©Scientific Information, Documentation and Publishing Office (SIDPO)-EAEA 



   55                                                             Quark-Hadron Model for Elastic Scattering Between…… 

Arab J. Nucl. Sci. Appl., Vol. XX, X, (2021)   

 

can obtain a microscopic description for these reactions 

even if one uses simple uncorrelated wave functions and 

effective elemental scattering amplitudes.  Indeed, the 

theory has shown great success in describing the elastic 

scattering data of hadron-nucleus interactions. The data 

are excellently reproduced especially when the higher 

orders of the multiple scattering series are considered 

[40-43]. For nucleus-nucleus scattering, the earlier 

analyses made by this theory have shown disagreements 

with the experimental data at small angles and/or 

unphysical divergence at large momentum transfers [41-

43]. However, the authors of these calculations 

attributed this failure to the simplifying approximations 

made. They truncated all higher orders of the multiple 

scattering series, a matter which omits the effective role 

of such orders at large scattering angels. Furthermore, 

the effect of the center-of-mass correlation is treated as   

a global correction factor for all orders of multiple 

scattering, a matter which destroy the translation 

invariance symmetry of the scattering amplitude. 

Moreover, all the nucleus-nucleus reactions applied 

have medium bombarding energies, and such energies 

neither sufficiently high to use Glauber model nor 

appropriate to employ the single Gaussian 

parametrization for            NN scattering amplitude 

[41,42]. Later, an attempt truncated the multiple 

scattering series showed that the drawback of the large 

𝑞 divergence is removed by incorporating the center-of-

mass correlations in the phase shift function with the 

same order as the scattering terms [43].  Clearly, without 

avoiding these drawbacks, the predictive power of 

Glauber approach cannot be assessed for analyzing 

composite particle scattering.   

As a matter of fact, the multiple scattering series of 

Glauber contains (2𝐴×𝐵 − 1) terms so that its complete 

summation is very extensive and computationally 

difficult for collisions with mass numbers 𝐴, 𝐵 ≥ 4.  

Furthermore, the model calculations involve 

multidimensional integrals, which are cumbersome to be 

evaluated, even if one uses simple Gaussian forms for the 

nuclear densities and NN scattering amplitudes. 

Unfortunately, at a high energy the momentum transfer of 

the composite particle scattering is significantly large, so 

the c. m. correlations should be treated in a consistent 

manner and the higher orders of the multiple scattering 

series are necessary to enhance the predictions at large 

angles. 

Owing to these difficulties, Yin et al. [44,50] with 

aid of the theory of permutation group have introduced         

a method to classify the multiple scattering terms into 

sets, each set contains the terms of equal contribution to 

the scattering amplitude. As a result, these terms of 

equal contribution are represented by one typical term, 

named ‘orbit’, and their number is referred to as the 

length of the corresponding orbit. The Gaussian forms 

for the nuclear densities and NN scattering amplitudes 

have transformed the multiple integral of each orbit into 

simple algebraic recurrence formulas.  However, it has 

been proven that the classification method is practically 

useful for calculating the full Glauber series of the 

multiple scattering between systems whose mass 

numbers ≤ 4 [47-50].  Later on, El-Gogary et al. have 

corrected the cluster approach proposed by Huang [51] 

to extend the application of Yin method to classify the 

multiple scattering terms of heavier systems [52,53] and 

treated the center-of-mass correlations of such systems 

in a consistent manner [54]. Although, the formulas 

developed in such attempts are a practical 

approximation to the exact Glauber series calculation, 

but their applications show unsatisfactory descriptions 

for elastic collisions at medium energies. However, such 

failure was attributed to the inaccurate values of the                

𝑁𝑁 parameters used at medium energies and the 

approximation of the 𝑁𝑁 amplitude by simple Gaussian 

form generally correct at a high energy.   

For analyzing composite scatterings at very high 

energies, many investigations reported that the precise 

description of Glauber multiple scattering theory 

requires the consideration of quarks as a substructure 

inside the nucleon [55-58].  The first Glauber model 

calculation taking this consideration was made by 

Franco [55] to investigate α-p and α-α elastic scattering 

at center of mass energy √𝑠 = 89 𝐺𝑒𝑉 and 126 𝐺𝑒𝑉, 

respectively.  In this attempt, the author has truncated 

the multiple scattering series between quarks of such 

systems up to fifth order scattering terms and 

parameterized the quark-quark (𝑞𝑞) scattering 

amplitudes and the quark densities with single Gaussian 

forms.  The 𝑞𝑞 parameters needed in these calculations 

are obtained by fitting the 𝑁𝑁 elastic scattering data. 

Unfortunately, these truncated Glauber series 

calculation of quark model underestimated the full 

series evaluation of the conventional nucleonic picture.  

Subsequent studies, approximated also the calculation 

of full Glauber series, have been performed to 

investigate the same reactions with what is called the 

hybrid quark-hadron (HQH) model [56,57].  The model 

is hybrid because it switches on the 𝑞𝑞 interactions of 

the nuclear systems just for collision with impact 

parameter 𝑏 ≤ 𝑏𝑜 fm, 𝑏𝑜 which is taken to be the radius 

of the hadron, and describes the collision of 𝑏 > 𝑏𝑜 fm 

outside the hadronic region with the conventional 𝑁𝑁 

interactions. The calculations are performed by taking 

the same forms previously reported [55] for 𝑞𝑞 and 𝑁𝑁 



  56                                                                                            M.M.H. El-Gogary 

 

Arab J. Nucl. Sci. Appl., Vol. 54, 4, (2021)   

 

scattering amplitudes, but with more suitable parameters 

using HQH model.  The elastic angular distribution of 

α-p scattering obtained using the HQH picture has 

shown       a better agreement with the experimental data 

than the previous calculations, especially at large 

momentum transfer [56].  For α-α scattering, the 

situation is not the same. The agreement is somewhat 

enhanced, but the prediction of HQH model to the 

scattering data for this case is clearly not satisfactory at 

large angles.  The truncation of the higher order multiple 

scattering terms made in Glauber series becomes serious 

for this case. 

Following the remarkable analyses made by other  

authors [55-57], El-Gogary et al. shared these efforts with 

an attempt other investigators [58] in which the quark and 

nucleon models are constructed using the formulas 

previously developed. [52-54]. We thought at that time 

that if one takes the full Glauber series of the multiple 

scattering between quarks in the composite systems, and 

utilizes reliable parameterizations of quark densities and 

𝑁𝑁 scattering amplitudes such as the single Gaussian 

forms which are more accurate at relativistic energies, this 

may make the quark model more realistic than the nucleon 

one at such energies.  However, the calculation of α-p 

scattering performed in this attempt shows an 

insignificant improvement, leading us to stop any further 

calculations to α-α scattering.  

In the present study, the author tends to improve the 

previously reported analysis [58] by constructing             a 

hybrid model in which the quark and hadron models of 

the scattering between two composite systems were 

combined using the full Glauber series calculations. This 

combination is carried out by configurating the space of 

the impact parameter (b) of the two-composite scattering 

amplitude into two distinct regions: the interior quark 

region (𝑏 ≤ 𝑏𝑜) and the exterior hadronic region       (𝑏 >

𝑏𝑜)  where 𝑏𝑜 = 0.7 f𝑚,  which is taken to be the 

boundary separating the two regions. This would include 

the contribution of quark degrees of freedom more 

consistently in composite scattering at relativistic 

energies.  For evaluation, the full Glauber multiple 

scattering series calculation of the hybrid model was 

performed and the results obtained are compared with the 

quark and nucleonic models [58] calculated 

independently. The formulas of the developed hybrid 

model presented here are given in section (2). The results 

of the differential cross sections of 𝛼 − 𝑝 and 𝛼 − 𝛼 

interactions using this study and their discussion are given 

in section (3).  Section (4) is left to the conclusion. The 

orbits, lengths and -matrices required for the 

calculations are exhibited in the Appendix I.   

2. THEORY 

In this section, a suitable approach is developed to 

determine the elastic scattering   between two composite 

nuclear systems of nucleon numbers 𝑚 and 𝑛 at relativistic 

energies. A hybrid quark-hadron model combining between 

two structures of the colliding systems was developed, 

namely the nucleon model as 𝑚 and 𝑛 nucleons and the 

quark model as 3𝑚 and 3𝑛  quarks, and involving the full 

Glauber series describing the multiple scattering between 

the constituents of each picture. According to this hybrid 

model, the whole elastic scattering amplitude of projectile 

𝐴 and target                    𝐵 combining the two pictures may 

be written as follows[56]:  

𝐹𝐴𝐵(𝑞⃗) =  𝐹𝑄𝑄
𝑏≤ 𝑏𝑜(𝑞⃗) + 𝐹𝑁𝑁

𝑏>𝑏𝑜(𝑞⃗)                                    (1) 

 𝐹𝑄𝑄
𝑏≤ 𝑏𝑜(𝑞⃗), stands for the scattering amplitude of two 

composite systems of 3𝑚 and 3𝑛 quarks in the inner quark 

region of impact parameter 𝑏 ≤ 𝑏𝑜 can be written in 

Glauber model as:  

𝐹𝑄𝑄
 𝑏 ≤ 𝑏𝑜(𝑞⃗) =

𝑖𝑘

2𝜋
𝛩(𝑞⃗) ∫ 𝑑𝑏⃗⃗ 𝑒𝑥𝑝(𝑖𝑞⃗ ⋅ 𝑏⃗⃗) {1 − 𝑒𝑥𝑝[𝑖𝜒𝑄𝑄(𝑏⃗⃗)] }

𝑏𝑜

0
    (2) 

𝐹𝑁𝑁
𝑏>𝑏𝑜(𝑞⃗), stands for the scattering amplitude of two 

composite systems of 𝑚 and 𝑛 nucleons in the outer 

hadronic region of impact parameter 𝑏 > 𝑏𝑜 ,which can 

similarly be given as:                            

𝐹𝑁𝑁
 𝑏 > 𝑏𝑜(𝑞⃗) =

𝑖𝑘

2𝜋
𝛩(𝑞⃗) ∫ 𝑑𝑏⃗⃗ 𝑒𝑥𝑝(𝑖𝑞⃗ ⋅ 𝑏⃗⃗) {1 − 𝑒𝑥𝑝[𝑖𝜒𝑁𝑁(𝑏⃗⃗)] }

∞

𝑏𝑜
 (3) 

Where, 𝑞⃗ is the momentum transferred from the projectile 

A to the target B.  𝛩(𝑞⃗) is the global correction arising from 

the effect of the center-of-mass correlations [42],  𝑘⃗⃗ is the 

incident momentum of the projectile,  𝑏⃗⃗ is the impact 

parameter vector and 𝑏𝑜 is a phenomenological parameter. 

 𝜒𝑄𝑄(𝑏⃗⃗) and 𝜒𝑁𝑁(𝑏⃗⃗) are the nuclear phase shift functions 

representing the scattering of two composite systems as 

bags of quarks and nucleons, respectively.  The modified 

scattering amplitude 𝐹̅(𝑞⃗) involving the center-of-mass 

correlations consistently not as a global correction factor 

𝛩(𝑞⃗)  as in Eq. 2 or 3 but with the same order as the phase-

shift expansion has a general form 

𝐹̅(𝑞⃗) =
𝑖𝑘

2𝜋
∫ 𝑑𝑏⃗⃗ 𝑒𝑥𝑝(𝑖𝑞⃗ ⋅ 𝑏⃗⃗) {1 −  𝑒𝑥𝑝[ 𝑖 𝜒̅(𝑏⃗⃗)] }               (4) 

𝜒̅(𝑏⃗⃗) , the modified nuclear phase shift function 

containing the center-of-mass correlations, is related to 

the uncorrelated one, 𝜒(𝑏⃗⃗) by [41,42] 

𝑒𝑥𝑝[𝑖𝜒̅(𝑏⃗⃗)] = ∫ 𝐽𝑜(𝑞𝑏) 𝛩(𝑞⃗) 𝑞 𝑑𝑞
∞

0
∫ 𝐽𝑜(𝑞𝑏′)

∞

0
𝑒𝑥𝑝[𝑖 𝜒(𝑏⃗⃗′)] 𝑏′ 𝑑𝑏′  (5) 

Using the additivity assumption in Glauber approximation 

[41], the total phase shift function 𝜒𝐴𝐵 of the colliding system 
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can be expressed in terms of the elemental phase shifts 𝜒𝑖𝑗 of 

their constituents as: 

𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖}, {𝑠𝑗
′}) = ∑ ∑ 𝜒𝑖𝑗(𝑏⃗⃗ + 𝑠𝑖 − 𝑠𝑗

′)𝐵
𝑗=1

𝐴
𝑖=1                                (6) 

with form 𝜒𝑄𝑄(𝑏⃗⃗, {𝑠𝑖}, {𝑠𝑗
′}) = ∑ ∑ 𝜒𝑖𝑗(𝑏⃗⃗ + 𝑠𝑖 − 𝑠𝑗

′)𝐵=3𝑛
𝑗=1

𝐴=3𝑚
𝑖=1   for 

quark model        

or                 

with form 𝜒𝑁𝑁(𝑏⃗⃗, {𝑠𝑖}, {𝑠𝑗
′}) = ∑ ∑ 𝜒𝑖𝑗(𝑏⃗⃗ + 𝑠𝑖 − 𝑠𝑗

′)𝐵=𝑛
𝑗=1

𝐴=𝑚
𝑖=1    for 

hadronic model 

and both are generally given by: 

𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ] = ⟨𝛹𝐴({𝑟𝑖})𝛹𝐵({𝑟𝑗
′})|𝑒𝑥𝑝[𝑖𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖}, {𝑠𝑗

′})]|𝛹𝐴𝛹𝐵⟩  (7) 

Where, 𝛹𝐴({𝑟𝑖}) [𝛹𝐵({𝑟𝑗
′})] is the ground state wave 

function of the projectile [target] system, {𝑠𝑖} [ {𝑠𝑗
′} ] is the 

projection of the relative position vector {𝑟𝑖} [ {𝑟𝑗
′} ] of the 

projectile [target] particles on the impact parameter plane.  

With the definition of the profile function, 

𝛤𝐴𝐵(𝑏⃗⃗) = 1 − 𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ], the phase shift operator 

takes the following form:  

𝑒𝑥𝑝[𝑖𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖}, {𝑠𝑗
′})] = ∏ ∏ [1 − 𝛤𝑖𝑗(𝑏⃗⃗ + 𝑠𝑖 − 𝑠𝑗

′)]𝐵
𝑗=1

𝐴
𝑖=1          (8) 

Where, 𝛤𝑖𝑗(𝑏⃗⃗ + 𝑠𝑖 − 𝑠𝑗
′) represents the profile function of the 

two-particle scattering.  Expanding the products in Eq. (6) 

gives the Glauber series representing the multiple scattering 

between the constituents of the composite system.  The 

number of terms contained in such series is (2𝐴×𝐵 − 1) terms, 

each term represents the multiple scattering with specific 

order.  For practical calculations, the approach employed by 

El-Gogary [54] was followed.  In this approach, the cluster 

structure is considered for the colliding systems. Suppose 

there are MA clusters in system A and MB clusters in system 

B, and there are MN particles in each cluster (MN is a common 

divisor for A and B)    under this treatment, Eq. (6) is re-

expressed as:  

𝑒𝑥𝑝[𝑖𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖𝛼}, {𝑠𝑗𝛿
′ })] = ∏ ∏ [1 − 𝛤𝑖𝑗(𝑏⃗⃗, {𝑠𝑖𝛼}, {𝑠𝑗𝛿

′ })]
𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1   (9) 

 with  

𝛤𝑖𝑗(𝑏⃗⃗, {𝑠𝑖𝛼}, {𝑠𝑗𝛿
′ }) = 1 − ∏ ∏ [1 − 𝛤𝑖𝛼,𝑗𝛿(𝑏⃗⃗ + 𝑠𝑖𝛼 − 𝑠𝑗𝛿

′ )]
𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1  (10) 

Where 𝛤𝑖𝑗represents the profile function of scattering 

between the ith cluster in projectile A and jth cluster in target 

B and 𝛤𝑖𝛼,𝑗𝛿 is the scattering between the th particle of the 

ith cluster in projectile A and th particle of jth cluster in 

target B.  

Adopting Yin et al. method [44], the multiple 

scattering terms of Eq. (9) can be classified into sets; each 

set contains the terms of equal contribution to the 

scattering amplitude.  All terms in each set are represented 

by one typical term, referred to as orbit, and the number 

of terms in this set is referred to as the length of that orbit.  

Having utilized this classification, the nuclear phase shift 

takes the form: 

𝑒𝑥𝑝[𝑖𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖𝛼}, {𝑠𝑗𝛿
′ })] = 1 + ∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1

)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏𝑀𝐵

𝑗=1
𝑀𝐴
𝑖=1   

[∑ ∑ 𝑇2(𝑉2, 𝜆𝑉2
)𝜆𝑉2

𝑀2
𝑉2=1 ∏ ∏ [−𝛤𝑖𝛼,𝑗𝛿(𝑏⃗⃗ + 𝑠𝑖𝛼 −

𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1

𝑠𝑗𝛿
′ )]

Δ𝑖𝛼,𝑗𝛿(𝑉2,𝜆𝑉2)
]

Δ𝑖𝑗(𝑉1,𝜆𝑉1)

            (11) 

Where, 𝑀1 = 𝑀𝐴 × 𝑀𝐵 , 𝑀2 = 𝑀𝑁 × 𝑀𝑁, and the indices 

(𝑉, 𝜆𝑉)characterize an orbit with order of scattering 𝑉and 

serial index 𝜆𝑉.  Each orbit (𝑉1, 𝜆𝑉1
)[(𝑉2, 𝜆𝑉2

) ] is 

represented by an 𝑀𝐴 × 𝑀𝐵 [𝑀𝑁 × 𝑀𝑁] dimensional 

matrix whose elements Δ𝑖𝑗(𝑉1, 𝜆𝑉1
) [Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)] have 

only two values one, if 𝛤𝑖𝑗 [𝛤𝑖𝛼,𝑗𝛿] appears in the 

expansion term and zero if it is absent.  𝑇1(𝑉1, 𝜆𝑉1
) 

[𝑇2(𝑉2, 𝜆𝑉2
)] is the length of the orbit 

(𝑉1, 𝜆𝑉1
)[(𝑉2, 𝜆𝑉2

) ]which is determined by using the 

properties of the permutation group, 𝐺1 = 𝑆𝑀𝐴
⊗ 𝑆𝑀𝐵

 

[𝐺2 = 𝑆𝑀𝑁
⊗ 𝑆𝑀𝑁

].  The scattering amplitude 𝑓𝑖𝛼,𝑗𝛿(𝑞⃗) is 

related to the profile function 𝛤𝑖𝛼,𝑗𝛿(𝑏⃗⃗) by:                                

𝛤𝑖𝛼,𝑗𝛿(𝑏⃗⃗) =
1

2𝜋𝑖𝑘𝑁
∫ 𝑑𝑞⃗ 𝑒𝑥𝑝(−𝑞⃗ ⋅ 𝑏⃗⃗) 𝑓𝑖𝛼,𝑗𝛿(𝑞⃗)              (12) 

Assuming, for simplicity, that all the two-particle 

amplitudes are equal, (which is approximately true at a 

high energy) 𝑓𝑖𝛼,𝑗𝛿(𝑞⃗) can be parameterized by [55, 56]:  

𝑓𝑖𝛼,𝑗𝛿(𝑞⃗) =
𝑘𝑁𝜎

4𝜋
(𝑖 + 𝜀) 𝑒𝑥𝑝(−𝜇𝑞2 2⁄ )                           (13) 

Where, 𝑘𝑁 is the momentum of the incident particle, , is 

the total cross-section and 𝜀, is the ratio of the real to the 

imaginary parts of the forward scattering amplitude. 𝜇 is 

the slope parameter of the elastic scattering differential 

cross-section.   Inserting Eq. (13) into Eq. (12) and doing 

the integration, we get  

; 𝛤𝑖𝛼,𝑗𝛿(𝑏⃗⃗ + 𝑠𝑖𝛼 − 𝑠𝑗𝛿
′ ) = 𝑔 𝑒𝑥𝑝 [− (𝑏⃗⃗ + 𝑠𝑖𝛼 − 𝑠𝑗𝛿

′ )
2

2𝜇⁄ ]   

                                           where,  𝑔 =
𝜎

4𝜋𝜇
(1 − 𝑖𝜀)      (14) 

 Substituting with Eq. (14) into Eq. (11), we get: 
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𝑒𝑥𝑝[𝑖𝜒𝐴𝐵(𝑏⃗⃗, {𝑠𝑖𝛼}, {𝑠𝑗𝛿
′ })] = 1 + ∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1

)𝜆𝑉1

𝑀1
𝑉1=1  

∏ ∏𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1    

 {∑ ∑ (−𝑔)𝑉2 𝑇2(𝑉2, 𝜆𝑉2
) 𝑒𝑥𝑝 [−

1

2𝜇
∑ ∑ (𝑏⃗⃗ +

𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1𝜆𝑉2

𝑀2
𝑉2=1

𝑠𝑖𝛼 − 𝑠𝑗𝛿
′ )

2
Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)] }
Δ𝑖𝑗(𝑉1,𝜆𝑉1)

        (15)  

Where     𝑉2 = ∑ ∑ Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2
)

𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1  . 

The form of wave function of the system is needed to 

perform the integration of Eq. (7).  Considering the 

approximation in which the particles inside any cluster and 

the clusters themselves inside the system are completely 

uncorrelated, then it could be written as follows: 

  | 𝛹𝐴({𝑟𝑖𝛼})𝛹𝐵({𝑟𝑗𝛿
′ })  |

2
=

[∏ ∏ 𝜌𝐴(𝑟𝑖𝛼)𝑀𝑁
𝛼=1

𝑀𝐴
𝑖=1 ][∏ ∏ 𝜌𝐵(𝑟𝑗𝛿

′ )
𝑀𝑁
𝛿=1

𝑀𝐵
𝑗=1 ]                     (16) 

Where 𝜌𝐴(𝑟𝑖𝛼) and 𝜌𝐵(𝑟𝑗𝛿
′ ) are the normalized single 

particle density functions and are chosen to be the single-

Gaussian form: 

𝜌𝛾(𝑟) = (𝐸𝛾)
3

2⁄
 𝑒𝑥𝑝(−𝜂𝛾

2𝑟2) , 𝛾 =  𝐴 , 𝐵               (17)   

Where, 𝐸𝛾 = 𝜂𝛾
2 𝜋⁄  and 𝜂𝛾

2is a size parameter related to 

the mean square radius ⟨𝑟𝛾
2⟩ measured for the nucleus.  

Because the incident direction of the projectile A is chosen 

to be the z-axis, 𝜒𝐴𝐵(𝑏⃗⃗) has no dependence on such variable 

in Glauber approximation, the integration of the nuclear 

densities over the variables 𝑧𝑖𝛼 and 𝑧𝑗𝛿
′  in Eq. (7) is 

performed directly and the remaining is the transverse 

densities given as: 

|𝛹𝐴({𝑠𝑖𝛼})𝛹𝐵({𝑠𝑗𝛿
′ })|

2
=

{∏ 𝑐𝐴𝑒𝑥𝑝[− ∑ 𝜂𝐴
2𝑠𝑖𝛼

2𝑀𝑁
𝛼=1 ]

𝑀𝐴
𝑖=1 } {∏ 𝑐𝐵  𝑒𝑥𝑝[− ∑ 𝜂𝐵

2 𝑠′
𝑗𝛿
2𝑀𝑁

𝛿=1 ]
𝑀𝐵
𝑗=1 }  

Where,  𝑐𝐴 = (𝐸𝐴)𝑀𝑁  ,  𝑐𝐵 = (𝐸𝐵)𝑀𝑁                                (18)  

With the phase shift function (15), the density (18), and the 

differential element  

 𝑑𝜏 = [∏ ∏ 𝑑𝑠𝑖𝛼
𝑀𝑁
𝛼=1

𝑀𝐴
𝑖=1 ] [∏ ∏ 𝑑𝑠𝑗𝛿

′𝑀𝑁
𝛿=1

𝑀𝐵
𝑗=1 ] 

    = [∏ ∏ 𝑑𝑥𝑖𝛼𝑑𝑦𝑖𝛼
𝑀𝑁
𝛼=1

𝑀𝐴
𝑖=1 ] [∏ ∏ 𝑑𝑥𝑗𝛿

′ 𝑑𝑦𝑗𝛿
′𝑀𝑁

𝛿=1
𝑀𝐵
𝑗=1 ]    (19)  

 Eq. (7) becomes, 𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ] = 1 +

∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏ [ 𝒄𝑨𝒄𝑩 ∗

𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1

∑ ∑ (−𝑔)𝑉2
𝜆𝑉2

𝑀2
𝑉2=1  𝑇2(𝑉2, 𝜆𝑉2

) ∫(∏ 𝑑𝑠𝑖𝛼
𝑀𝑁
𝛼=1 ) (∏ 𝑑𝑠𝑗𝛿

′𝑀𝑁
𝛿=1 )  𝑒𝑥𝑝 − { ∑ 𝜂𝐴

2𝑠𝑖𝛼
2𝑀𝑁

𝛼=1 −

   ∑ 𝜂𝐵
2 𝑠′

𝑗𝛿
2𝑀𝑁

𝛿=1 −
1

2𝜇
∑ ∑ (𝑏⃗⃗ + 𝑠𝑖𝛼 −

𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1

𝑠𝑗𝛿
′ )

2
Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

) } ]
 Δ𝑖𝑗(𝑉1,𝜆𝑉1)

                   (20) 

 

 Eq. (20) can be written as:  

   𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗)] = 1 + ∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏ [

𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1 𝒄𝑨𝒄𝑩 

∗ ∑ ∑ 𝑇2(𝑉2, 𝜆𝑉2
)𝜆𝑉2

𝑀2
𝑉2=1 (−𝑔)𝑉2   𝐽

(𝑉2,𝜆𝑉2,𝛥𝑖𝛼,𝑗𝛿(𝑉2,𝜆𝑉2))
(𝑏⃗⃗)]

𝛥𝑖𝑗(𝑉1,𝜆𝑉1)

  (21) 

Where,  

 𝐽
(𝑉2,𝜆𝑉2 ,Δ𝑖𝛼,𝑗𝛿(𝑉2,𝜆𝑉2))

(𝑏⃗⃗) =

∫(∏ 𝑑𝑠𝑖𝛼
𝑀𝑁
𝛼=1 )  (∏ 𝑑𝑠𝑗𝛿

′𝑀𝑁
𝛿=1 ) 𝑒𝑥𝑝{− ∑ 𝜂𝐴

2𝑠𝑖𝛼
2𝑀𝑁

𝛼=1     

 − ∑ 𝜂𝐵
2  𝑠′

𝑗𝛿
2𝑀𝑁

𝛿=1 −
1

2𝜇
∑ ∑ (𝑏⃗⃗ + 𝑠𝑖𝛼 −

𝑀𝑁
𝛿=1

𝑀𝑁
𝛼=1

𝑠𝑗𝛿
′ )

2
Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

) }                                                     (22)  

The multiple integral in Eq. (22) can be solved recursively 

yielding the result: 

𝐽
(𝑉2,𝜆𝑉2 ,Δ𝑖𝛼,𝑗𝛿(𝑉2,𝜆𝑉2))

(𝑏⃗⃗) =

𝑅[𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)] 𝑒𝑥𝑝 [−𝑆 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)) 𝑏2] (23) 

With     𝑅 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)) =

[∏ (4𝜋𝜇2𝑇𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
))

𝑀𝑁
𝛼=1 ] [∏ (

𝜋

𝑎𝛿𝛿(𝑖,𝑗,𝛿)
)

𝑀𝑁
𝛿=1 ] 

and, 𝑆 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)) = 𝑎𝑜(𝛿) − ∑
𝑐𝛿

2(𝛿)

4𝑎𝛿𝛿(𝑖,𝑗,𝛿)

𝑀𝑁
𝛿=1   

Where the symbols appeared are defined as:  

 𝜎𝛿(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
) = ∑ Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)
𝑀𝑁
𝛼=1       

 𝜌𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
) = ∑ Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)
𝑀𝑁
𝛿=1                           (24) 

  𝑇𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
) = 1 2𝜇 (2𝜇𝜂𝐴

2 + 𝜌𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
))⁄   

and the coefficients 𝑎’s and 𝑐’s are determined using the 

simple algebraic recursion formulas: 

 𝑎𝑜(𝑀𝑁) = ∑ 𝜂𝐵
2𝑀𝑁

𝛿=1   

𝑎𝛿𝛿(𝑖, 𝑗, 𝑀𝑁) = 𝜂𝐵
2 +

1

2𝜇
𝜎𝛿(𝑖, 𝑗, 𝑉2, 𝜆𝑉2

) −

∑ 𝑇𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
)Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)
𝑀𝑁
𝛼=1   

𝑎𝛿𝛽(𝑖, 𝑗, 𝑀𝑁) =

2 ∑ 𝑇𝛼(𝑖, 𝑗, 𝑉2, 𝜆𝑉2
)Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

) 
𝑀𝑁
𝛼=1 Δ𝑖𝛼,𝑗𝛽(𝑉2, 𝜆𝑉2

)       β > δ    

𝑐𝛿(𝑀𝑁) = 2𝜂𝐵
2                                                              (25)  

 𝑎𝛿𝛿(𝑖, 𝑗, 𝑀𝑁 − 1) = 𝑎𝛿𝛿(𝑖, 𝑗, 𝑀𝑁) −
𝑎𝛿 𝑀𝑁

2 (𝑖,𝑗,𝑀𝑁)

4𝑎𝑀𝑁 𝑀𝑁
(𝑖,𝑗,𝑀𝑁)
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 𝑎𝛿𝛽(𝑖, 𝑗, 𝑀𝑁 − 1) = 𝑎𝛿𝛽(𝑖, 𝑗, 𝑀𝑁) +

𝑎𝛿𝑀𝑁
(𝑖,𝑗,𝑀𝑁)𝑎𝛽𝑀𝑁

(𝑖,𝑗,𝑀𝑁)

2𝑎𝑀𝑁 𝑀𝑁
(𝑖,𝑗,𝑀𝑁)

   ,                 β > δ                                                                         

  𝑐𝛿(𝑀𝑁 − 1) = 𝑐𝛿(𝑀𝑁) +
𝑐𝑀𝑁

(𝑀𝑁)𝑎𝛿𝑀𝑁
(𝑖,𝑗,𝑀𝑁)

2𝑎𝑀𝑁 𝑀𝑁
(𝑖,𝑗,𝑀𝑁)

 

The details of the integration method are given in                a 

previous study [54].  Thus, the following result could be 

obtained:   

𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ] = 1 + ∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏ [

𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1  𝑐𝐴𝑐𝐵 

∑ ∑ (−𝑔)𝑉2
𝜆𝑉2

𝑀2
𝑉2=1  ∗  𝑇2(𝑉2, 𝜆𝑉2

)  𝑅 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

))  

 𝑒𝑥𝑝 { −  𝑆 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)) 𝑏2 } ]
Δ𝑖𝑗(𝑉1,𝜆𝑉1)

   (26)  

 

For incorporating the center of mass correlations in the 

phase shift function, let us write  𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ] , Eq. 

(26) , as:  

𝑒𝑥𝑝[ 𝑖𝜒𝐴𝐵(𝑏⃗⃗) ] = 1 +

∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏ [𝑍]𝑀𝐵

𝑗=1
𝑀𝐴
𝑖=1

Δ𝑖𝑗(𝑉1,𝜆𝑉1)
        (27) 

Where, 

  𝑍 = 𝒄𝑨𝒄𝑩 ∑ ∑  (−𝑔)𝑉2   𝑇2(𝑉2, 𝜆𝑉2
)𝜆𝑉2

𝑀2
𝑉2=1 𝑅 (𝑉2, 𝜆𝑉2

, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2
)) 

 ∗ 𝑒𝑥𝑝 [−𝑆 (𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)) 𝑏2]                           (28) 

In addition , the center of mass correction factor 𝛩(𝑞⃗) =

𝑒𝑥𝑝 [
𝑞2

4
(

1

𝐴 𝜂𝐴
2 +

1

𝐵 𝜂𝐵
2 )]  [42] would be: 

 𝛩𝑄𝑄(𝑞⃗) = 𝑒𝑥𝑝 [
𝑞2

4
(

1

𝐴 𝜂𝐴
2 +

1

𝐵 𝜂𝐵
2 )]  with  𝐴 = 3𝑚  , 𝐵 = 3𝑛    

(the correction for quark model)  

Or 

   𝛩𝑁𝑁(𝑞⃗) = 𝑒𝑥𝑝 [
𝑞2

4
(

1

𝐴 𝜂𝐴
2 +

1

𝐵 𝜂𝐵
2 )]  with  𝐴 = 𝑚  , 𝐵 = 𝑛  

(the correction for hadronic model)  

The modified phase shift function 𝜒̄𝐴𝐵(𝑏⃗⃗) can be 

similarly written as: 

𝑒𝑥𝑝[𝑖𝜒̄𝐴𝐵(𝑏⃗⃗)] = 1 +

∑ ∑ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∏ ∏ [𝑍̄]𝑀𝐵

𝑗=1
𝑀𝐴
𝑖=1

Δ𝑖𝑗(𝑉1,𝜆𝑉1)
               (29)  

Inserting the expression of 𝑍, Eq. (28), and the center of 

mass correction, into Eq. (5) , 

𝑍̄ is obtained by the form:  

 𝑍̄ = 𝑐𝐴𝑐𝐵  ∑ ∑ 𝑇2(𝑉2, 𝜆𝑉2
)𝜆𝑉2

𝑀2
𝑉2=1  (−𝑔)𝑉2   𝑅̄ (𝑉2, 𝜆𝑉2

, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2
)) 

 ∗ 𝑒𝑥𝑝{−𝑆 ̄ [𝑉2, 𝜆𝑉2
, Δ𝑖𝛼,𝑗𝛿(𝑉2, 𝜆𝑉2

)] 𝑏2}                           (30) 

 with,     𝑆̄ = [ 
1

𝑆
−

1

𝐴 𝜂𝐴
2    

−
1

𝐵 𝜂𝐵
2  

]
(−1)

          and               𝑅̄ =

(𝑅 ∗ 𝑆 ̄ )  𝑆⁄   . 
 

Using Eqs. (29) and (30), the scattering amplitudes of 

quark and nucleon pictures can be obtained  by 

performing the integration in Eqs. (2) and (3) numerically.  

If we take cluster configuration MA=A, MB=B and MN=1, 

the integration gives the analytical result of the nucleon 

model given by:  

𝐹𝐴𝐵(𝑞) = 1 + 𝑐𝐴𝑐𝐵 { ∑ ∑ (−𝑔)𝑉1  ∗ 𝑇1(𝑉1, 𝜆𝑉1
)𝜆𝑉1

𝑀1
𝑉1=1 ∗

                 

  
𝑅̄(𝑉1, 𝜆𝑉1 ,Δ𝑖𝛼,𝑗𝛿(𝑉1,𝜆𝑉1))

2 𝑆̄ (𝑉1, 𝜆𝑉1 ,Δ𝑖𝛼,𝑗𝛿(𝑉1,𝜆𝑉1))
  𝑒𝑥𝑝 [− 

𝑞2

4 𝑆̄ (𝑉1, 𝜆𝑉1 ,Δ𝑖𝛼,𝑗𝛿(𝑉1,𝜆𝑉1))
] }  

where     𝑉1 = ∑ ∑ Δ𝑖𝑗(𝑉1, 𝜆𝑉1)𝑀𝐵
𝑗=1

𝑀𝐴
𝑖=1  

 The angular distribution of the total elastic scattering 

amplitude of Eq.(1) in hybrid model is then given by:                                                           

𝑑𝜎(𝑞⃗⃗)

𝑑𝛺
   = |𝐹𝐴𝐵(𝑞⃗)|2                             (31) 

 

RESULTS AND DISCUSSION 

   In section (2), the composite-composite elastic 

collisions have been analyzed in a hybrid model 

combining two pictures, namely the quark and nucleonic 

models of their structures and considering the full Glauber 

series of the multiple scattering between their constituents 

as nucleons and as quarks.  Analytic formulas for the 

nuclear phase shift function of these pictures are 

developed using single Gaussian parameterizations for 

the quark/nucleon densities and elemental scattering 

amplitudes. The hybrid model developed here is applied 

to calculate the differential cross sections of  𝛼𝑝 elastic 

scattering at √𝑠 = 89 𝐺𝑒𝑉 and 𝛼𝛼 elastic scattering at 

√𝑠 = 126 𝐺𝑒𝑉. For comparison, the corresponding 

results of the quark model and the conventional nucleon 

model are also evaluated independently. The ingredients 

needed to perform these calculations are the parameters 

associated with the 𝑞𝑞 and the 𝑁𝑁 scattering amplitudes 

(𝜎, 𝜀 and 𝛽2) and the quark/nucleon densities (𝜂𝐴, 𝜂𝐵).  

The 𝑞𝑞 parameters used are obtained by fitting the 𝑁𝑁 

data of corresponding energies and the values of both are 

listed in Table (1). 

 
[ 
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         Table (1):  The parameters of the 𝒒𝒒 and 𝑵𝑵 scattering amplitudes 

√𝑠 

(𝐺𝑒𝑉) 

        𝜎 (fm2)                    𝛽2 (fm2)       Ref. No. 

   𝑞𝑞                       NN      ε qq  ε NN 𝛽2
qq 𝛽2

NN    𝑞𝑞  𝑁𝑁 

30.7 0.5352 4.014 0.045 0.037 0.083 0.47505 [55] [57] 

44.7 0.5555 4.179 0.075 0.062 0.105 0.4984 [56] [58] 

 

The values of the parameters 𝜂𝐴, 𝜂𝐵, after correcting for 

the effects of the finite proton-size and the c. m. recoil, are 

given by: 

                         𝜂𝛾
2 =

3

2
(

(1−1/𝛾)

⟨𝑟𝛾
2⟩−⟨𝑟𝑝

2⟩
)      ,        𝛾 = 𝐴, 𝐵, 

Where ⟨𝑟𝛾
2⟩ and ⟨𝑟𝑝

2⟩ are the mean square radii of the 

nucleus and the proton, respectively and their values were 

reported in an earlier publication[55]. 

   The numbers (MA, MB, MN), determining the 

configuration of the cluster structure assumed in each 

system, are taken as follows: For 𝛼 − 𝑝 case, the cluster 

configuration of the quark model is taken to be MA= 4, 

MB = 1 and MN = 3 while the configuration for the nucleon 

model gives MA = 4, MB = 1 and MN = 1.  For 𝛼 − 𝛼 case, 

the cluster configuration of the quark model is taken to be 

MA = 4, MB = 4 and MN  = 3 while the configuration for 

the nucleon model gives MA= 4,          MB = 4 and MN = 1.  

The orbits, lengths and -matrices of the groups 𝐺1 =

𝑆𝑀𝐴
⊗ 𝑆𝑀𝐵

and 𝐺2 = 𝑆𝑀𝑁
⊗ 𝑆𝑀𝑁

 represent these 

structures are given in appendix (I) .     

   The application of these ingredients started by 

calculating the differential cross-section of the             𝛼 −

𝑝 elastic scattering at √𝑆 = 89 𝐺𝑒𝑉 . The results are 

shown in Fig.(1).   In this Figure, the full Glauber series 

calculation obtained from the hybrid model (solid curve), 

the quark model (dashed curve) and the nucleon model 

(dotted curve) in comparison with the experimental data 

were presented. The comparison shows that the 

calculations obtained from the three models are identical 

in reproducing the scattering data over the range of 

momentum transfer  0.0 − 𝑡  0.3 (𝐺𝑒𝑉/𝑐)2.  The 

excellent agreement obtained over the smaller values of 

momentum transfer is expected because the Glauber 

theory is a good approximation at forward angles.   For  

−𝑡 ≥ 0.3 (𝐺𝑒𝑉/𝑐)2, the results obtained from the three 

models are significantly different in their agreements.  

The results of the hybrid model (solid curve) are greatly 

successful in describing the scattering data                    up 

to  −𝑡 ≈ 0.73 (𝐺𝑒𝑉/𝑐)2 while the predictions of the 

other models are failing in reproducing the data for −𝑡 ≥

0.3 (𝐺𝑒𝑉/𝑐)2.  Either the predictions of the quark model 

(dashed curve) or the results of the nucleon model (dotted 

curve) underestimates the existing data beyond −𝑡 =

0.3 (𝐺𝑒𝑉/𝑐)2.  Obviously, we can notice the advantage 

of the nucleon model calculations over the quark model 

ones in explaining the experimental data, but this 

advantage is expected because the full Glauber series of 

the nucleon-nucleon scatterings is calculated more 

rigorously than quark-quark interactions one. However, 

our calculation of α-p scattering using the hybrid model 

developed here with full Glauber series of quark-quark 

and nucleon-nucleon multiple scatterings gives slightly 

better agreement at large momentum transfer than that 

obtained in a previous investigation[56] using different 

analysis for the hybrid model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1): Differential cross-section of 𝛼 − 𝑝 elastic collision 

at√𝑠 = 89 𝐺𝑒𝑉. Full Glauber series evaluation results 

of hybrid, quark and nucleon models are compared with 

the experimental data. The dashed curve is the quark 

model results.  The dotted curve is the nucleon model 

results.  The solid curve is the hybrid model results. The 

experimental data are from Ref. [12]. 
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The results of 𝛼 − 𝛼 elastic scattering at √𝑠 = 126 𝐺𝑒𝑉 is 

presented in Fig.(2), where the solid curve represents the 

hybrid model calculations, the dashed curve displays the pure 

quark model predictions and the dotted curve stands for the 

results of the nucleon model.  The curves in Fig.(2) are labeled 

as in Fig. (1).   The results in Fig. (2) show that the hybrid 

model (solid curve) improves in general the theoretical 

descriptions given before by the quark model (dashed curve) 

and nucleon model (dotted curve) calculations, but with 

inferior quality than the fitting obtained for α-p elastic 

scattering case. The results of the three approaches are also 

almost identical and reasonable, fairly agree with the scattering 

data over the range of momentum transfer 0.05 < −𝑡 <

0.25 (𝐺𝑒𝑉/𝑐)2, and beyond this range, their predictions are 

clearly of less well founded agreements.  For momentum 

transfers −𝑡 ≥  0.25 (𝐺𝑒𝑉/𝑐)2, the results of hybrid model 

have shown closer values to the experimental data than those 

obtained from the nucleon and the quark models. Although the 

discrepancies between the sets of measurements at forward and 

large angles make the comparisons difficult, the full Glauber 

series calculation using the hybrid model developed in the 

present study gives a better agreement for 𝛼 − 𝛼 scattering than 

that obtained earlier [57] using different analysis for the hybrid 

model.   Finally, it could be ensured that the quark degrees of 

freedom in the interior quark region really play an important 

role in improving the theoretical descriptions of 𝛼 −  𝑝 and 𝛼 −

 𝛼 experimental data, especially at large momentum transfers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION  

   The elastic collisions between two composite systems at 

very large energies have been investigated by developing 

a hybrid model combines the quark and nucleon pictures 

including the full Glauber multiple scattering series of 

their constituents. Using Gaussian forms for the 

quark/nucleon densities and scattering amplitudes, 

analytic formulas have been developed to calculate 𝛼 − 𝑝 

and 𝛼 − 𝛼 interactions at center of mass energies 89 and 

126 𝐺𝑒𝑉, respectively. The positive findings and 

negative criticisms of the present study could be 

summarized in a united conclusion as follows: 

   The hybrid model combining the full Glauber series of 

the quark and nucleon models improves the prediction of 

the Glauber theory than applying this theory by using the 

quark and nucleon models independently. The hybrid 

model is successful in reproducing the experimental data 

of high energy 𝛼 − 𝑝 and 𝛼 − 𝛼 elastic scattering, at large 

momentum transfers, where the high orders of multiple 

scattering are dominant.   We can conclude that the quark 

degrees of freedom in the interior quark region really play 

an important role in improving the theoretical description 

of experimental data. In particular, the inclusion of the full 

series enhances the applicability of the hybrid model at a 

large momentum transfer over both quark and nucleon 

structures.  

   The common criticism against present calculations and 

those previously employed in previous studies [55-58] is 

that the quark model always underestimates the predicted 

cross sections more than the nucleon model at large 

momentum transfers.  Surely, considering the structure of 

the composite systems as quarks adds            a larger 

number of scattering centers rather than their number as 

nucleons and consequently enlarges the number of the 

higher order multiple scattering terms which have an 

effective role at a large momentum transfer.  Thus, the 

underestimation means that treating the composite 

scattering as pure quark-quark interactions has added 

unrealistic higher order scattering terms interfere more 

destructively than those of nucleon–nucleon collisions. 

This justification has been tested before using the 

approach developed by M. W. Hsing et al. [56] and 

confirmed by the present one.    

   Our systematic future improvements to complete this 

study in the same direction are suggested as follows:  

First, the full Glauber multiple scattering series of 

quark model can be calculated with a more elaborate 

technique as the one proposed by El-Gogary [59].  

Second, as an alternative, a more realistic form for the 

quark/ nucleon scattering amplitudes can be used such as 

sum Gaussian or harmonic oscillator shapes, rather than 

the Gaussian form. Both recommended improvements 

Fig. (2): Differential cross-section of 𝛼 − 𝛼 elastic collision at 

√𝑠 = 126 𝐺𝑒𝑉. Full Glauber series calculation results of hybrid, 

quark and nucleon models are compared with the experimental 

data. The dashed curve is the quark model results. The dotted 

curve is the nucleon model results.  The solid curve is the hybrid 

model results.  The experimental data are from Refs. [14,15]. 
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may lead to a better description and may assess the 

question about the predictive power of the proposed 

hybrid model seriously.   
 

Appendix I 

This appendix contains the Tables in which the orbits, 

lengths and - matrices employed in the present 

calculations are presented.  They were obtained by 

enumerating and investigating all the possible 

combinations of collisions according to their permutation 

[44].   In the preset work, the elastic collisions -p and -

 have been studied under their quark and nucleon 

structures. The orbits, lengths and -matrices of the 

groups 𝐺1 = 𝑆𝑀𝐴
⊗ 𝑆𝑀𝐵

and 𝐺2 = 𝑆𝑀𝑁
⊗ 𝑆𝑀𝑁

 (defined 

in section 2) representing the multiple scattering of these 

reactions depend on the assumed cluster configuration.  

For the α-p scattering, the quark model yields cluster 

configuration MA= 4, MB=1 and MN =3, while the nucleon 

model satisfies the cluster configuration MA= 4, MB=1 

and MN =1.   For α-α scattering, the quark model yields 

the cluster configuration MA= MB= 4 and MN =3. 

However, the nucleon model gives the cluster 

configuration MA= MB= 1 and MN = 4.   For the sake of 

brevity, only the Tables of the non-similar groups were 

given. 

Table (1): Orbits, lengths and  - matrices for G = 𝑺𝟒 ⊗ 𝑺𝟏 
 

V V T (V , V) Δ (V , V) 

1 1 4 1000 

2 1 6 1100 

  Total number of orbits (including the orbits not shown) = 4 

   Table (2): Orbits, lengths and  - matrices for S3  S3 
 

V V T (V , V) Δ (V , V) 

1 1 9 1  0  0  0  0  0  0  0  0 

2 1 18 1  1  0  0  0  0  0  0  0 

2 2 18 1  0  0  0  1  0  0  0  0 

3 1 6 1  1  1  0  0  0  0  0  0 

3 2 36 1  1  0  0  0  1  0  0  0 

3 3 36 1  1  0  1  0  0  0  0  0 

3 4 6 1  0  0  0  1  0  0  0  1 

4 1 36 1  1  1  1  0  0  0  0  0 

4 2 36 1  1  0  1  0  1  0  0  0 

4 3 9 1  1  0  1  1  0  0  0  0 

4 4 36 1  1  0  1  0  0  0  0  1 

4 5 9 0  1  1  1  0  0  1  0  0 

Total number of orbits (including the orbits not shown) = 25 

 

Table (3): Orbits, lengths and  - matrices for S4  S4 

V V T (V , V) Δ (V , V) 

1 1 16 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

2 1 48 1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

2 2 72 1  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0 

3 1 32 1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0 

3 2 288 1  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0 

3 3 144 1  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0 

3 4 96 1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  0 

4 1 8 1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0 

4 2 288 1  1  1  0  1  0  0  0  0  0  0  0  0  0  0  0 

4 3 96 1  1  1  0  0  0  0  1  0  0  0  0  0  0  0  0 

4 4 288 1  1  0  0  1  0  1  0  0  0  0  0  0  0  0  0 

4 5 72 1  1  0  0  0  0  1  1  0  0  0  0  0  0  0  0 

4 6 288 1  1  0  0  0  0  1  0  0  0  0  1  0  0  0  0 

4 7 36 1  1  0  0  1  1  0  0  0  0  0  0  0  0  0  0 

4 8 576 1  1  0  0  1  0  0  0  0  0  1  0  0  0  0  0 

4 9 144 0  1  1  0  1  0  0  0  1  0  0  0  0  0  0  0 

4 10 24 1  0  0  0  0  1  0  0  0  0  1  0  0  0  0  1 

5 1 96 1  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0 

5 2 288 1  1  1  0  1  1  0  0  0  0  0  0  0  0  0  0 

5 3 288 1  1  1  0  1  0  0  1  0  0  0  0  0  0  0  0 

5 4 576 1  1  1  0  1  0  0  0  0  1  0  0  0  0  0  0 

5 5 576 1  1  1  0  1  0  0  0  0  0  0  1  0  0  0  0 

5 6 96 0  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0 

5 7 576 1  1  0  0  1  0  1  0  0  0  0  1  0  0  0  0 

5 8 576 1  1  0  0  0  0  1  1  1  0  0  0  0  0  0  0 

5 9 144 1  1  1  0  1  0  0  0  1  0  0  0  0  0  0  0 

5 10 144 1  1  0  0  1  1  0  0  0  0  1  0  0  0  0  0 

5 11 576 0  1  1  0  1  1  0  0  1  0  0  0  0  0  0  0 

5 12 288 1  1  0  0  1  0  0  0  0  0  1  0  0  0  0  1 

5 13 144 0  1  1  0  1  0  0  0  1  0  0  0  0  0  0  1 

6 1 144 1  1  1  1  1  1  0  0  0  0  0  0  0  0  0  0 
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  Table (3): (Continued) 

V V T (V , V) Δ (V , V) 

6 2 96 1  1  1  1  1  0  0  0  1  0  0  0  0  0  0  0 

6 3 288 1  1  1  1  1  0  0  0  0  1  0  0  0  0  0  0 

6 4 48 1  1  1  0  1  1  1  0  0  0  0  0  0  0  0  0 

6 5 144 1  1  1  0  1  1  0  1  0  0  0  0  0  0  0  0 

6 6 576 1  1  1  0  1  0  0  1  1  0  0  0  0  0  0  0 

6 7 576 1  1  1  0  1  1  0  0  0  0  1  0  0  0  0  0 

6 8 576 1  1  1  0  1  1  0  0  0  0  0  1  0  0  0  0 

6 9 1152 1  1  1  0  0  1  0  1  1  0  0  0  0  0  0  0 

6 10 575 0  1  1  1  1  1  0  0  1  0  0  0  0  0  0  0 

6 11 192 1  1  1  0  1  0  0  0  0  1  0  0  0  0  1  0 

6 12 288 0  1  1  1  1  0  0  0  0  1  0  0  1  0  0  0 

6 13 576 1  1  0  0  1  0  1  0  0  1  0  1  0  0  0  0 

6 14 144 1  1  0  0  1  1  0  0  0  0  1  1  0  0  0  0 

6 15 288 0  0  1  1  1  1  0  0  1  0  0  0  0  1  0  0 

6 16 576 1  1  1  0  1  0  0  0  0  1  0  0  0  0  0  1 

6 17 576 1  1  1  0  1  1  0  0  1  0  0  0  0  0  0  0 

6 18 144 1  1  1  0  1  0  0  0  1  0  0  0  0  0  0  1 

6 19 16 0  1  1  1  1  0  0  0  1  0  0  0  1  0  0  0 

6 20 96 1  1  0  0  1  0  1  0  0  1  1  0  0  0  0  0 

6 21 72 1  1  0  0  1  1  0  0  0  0  1  0  0  0  0  1 

6 22 576 1  1  0  0  1  0  1  0  0  1  0  0  0  0  0  1 

6 23 288 0  1  0  1  1  0  1  0  0  1  0  0  1  0  0  0 

7 1 96 1  1  1  1  1  1  1  0  0  0  0  0  0  0  0  0 

7 2 576 1  1  1  1  1  1  0  0  1  0  0  0  0  0  0  0 

7 3 576 1  1  1  1  1  1  0  0  0  0  1  0  0  0  0  0 

7 4 288 1  1  1  1  1  0  0  0  1  0  0  0  0  1  0  0 

7 5 192 1  1  1  1  1  0  0  0  0  1  0  0  0  0  1  0 

7 6 288 1  1  1  0  1  1  1  0  1  0  0  0  0  0  0  0 

7 7 576 1  1  1  0  1  1  0  1  1  0  0  0  0  0  0  0 

7 8 96 1  1  1  0  1  1  1  0  0  0  0  1  0  0  0  0 

7 9 1152 1  1  1  0  1  1  0  0  1  0  0  1  0  0  0  0 

 

 

 

Table (3): (Continued) 

V V T (V , V) Δ (V , V) 

7 10 576 1  1  1  0  1  1  0  0  0  0  1  1  0  0  0  0 

7 11 576 1  1  1  0  1  1  0  0  0  0  1  0  0  0  0  1 

7 12 576 1  1  1  0  1  1  0  1  0  0  1  0  0  0  0  0 

7 13 288 1  0  1  1  1  1  0  0  1  1  0  0  0  0  0  0 

7 14 576 1  0  1  1  1  1  0  0  1  0  0  0  0  1  0  0 

7 15 576 1  1  0  1  1  0  1  0  0  1  1  0  0  0  0  0 

7 16 288 1  1  0  1  1  1  0  0  0  0  1  0  0  0  1  0 

7 17 576 1  1  1  0  1  0  0  1  0  0  1  0  0  1  0  0 

7 18 1152 0  1  1  1  1  1  0  0  0  0  1  0  1  0  0  0 

7 19 16 1  1  1  1  1  0  0  0  1  0  0  0  1  0  0  0 

7 20 288 1  1  1  0  1  1  0  0  1  0  1  0  0  0  0  0 

7 21 1152 1  1  1  0  1  1  0  0  1  0  0  0  0  0  0  1 

7 22 144 0  1  1  1  1  1  0  0  1  0  0  0  1  0  0  0 

7 23 576 1  1  1  0  1  0  0  1  1  0  0  0  0  1  0  0 

7 24 144 1  1  0  0  1  1  0  0  0  0  1  1  0  0  1  0 

7 25 576 0  1  1  0  1  1  0  0  1  0  0  1  0  0  1  0 

7 26 96 0  1  1  0  1  1  0  0  1  0  1  0  0  0  0  1 

8 1 12 1  1  1  1  1  1  1  1  0  0  0  0  0  0  0  0 

8 2 576 1  1  1  1  1  1  1  0  1  0  0  0  0  0  0  0 

8 3 192 1  1  1  1  1  1  1  0  0  0  0  1  0  0  0  0 

8 4 144 1  1  1  1  1  1  0  0  1  1  0  0  0  0  0  0 

8 5 576 1  1  1  1  1  1  0  0  1  0  1  0  0  0  0  0 

8 6 144 1  1  1  1  1  1  0  0  0  0  1  1  0  0  0  0 

8 7 288 1  1  1  1  1  1  0  0  1  0  0  0  0  1  0  0 

8 8 1152 1  1  1  1  1  1  0  0  1  0  0  0  0  0  1  0 

8 9 288 1  1  1  1  1  1  0  0  0  0  1  0  0  0  0  1 

8 10 288 1  1  1  0  1  1  0  1  1  1  0  0  0  0  0  0 

8 11 288 1  1  1  0  1  1  0  1  0  0  1  1  0  0  0  0 

8 12 288 1  1  1  0  1  1  1  0  1  0  0  0  0  0  0  1 

8 13 48 1  1  1  0  1  1  1  0  0  0  0  1  0  0  0  1 
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Table (3):(Continued) 

V V T (V , V) Δ (V , V) 

8 14 288 1  1  1  0  1  1  1  0  1  0  0  1  0  0  0  0 

8 15 576 1  1  1  0  1  1  0  0  0  0  1  1  0  0  0  1 

8 16 1152 1  0  1  1  1  1  0  0  1  0  1  0  0  1  0  0 

8 17 576 1  1  1  0  1  0  0  1  0  0  1  1  0  1  0  0 

8 18 288 1  1  1  1  0  1  1  0  1  0  0  0  1  0  0  0 

8 19 1152 1  1  0  1  1  1  1  0  1  0  1  0  0  0  0  0 

8 20 288 0  1  1  1  1  1  1  0  1  0  0  0  1  0  0  0 

8 21 1152 1  1  0  1  1  1  1  0  1  0  0  0  0  0  1  0 

8 22 288 1  1  1  0  1  1  0  1  0  0  1  0  0  0  0  1 

8 23 576 1  0  1  1  1  1  0  0  1  1  0  0  0  0  1  0 

8 24 144 1  1  1  1  1  1  0  0  1  0  0  0  1  0  0  0 

8 25 144 1  1  1  0  1  1  1  0  1  1  0  0  0  0  0  0 

8 26 144 1  1  1  0  1  1  0  1  1  0  0  0  0  1  0  0 

8 27 288 1  1  1  0  1  1  0  0  1  0  1  0  0  0  0  1 

8 28 576 1  0  1  1  0  1  1  0  1  1  0  0  1  0  0  0 

8 29 576 1  1  1  0  1  1  0  0  1  0  0  1  0  0  1  0 

8 30 288 0  1  1  1  1  0  1  0  1  1  0  0  1  0  0  0 

8 31 18 1  1  0  0  1  1  0  0  0  0  1  1  0  0  1  1 

8 32 72 0  1  1  0  1  1  0  0  1  0  0  1  0  0  1  1 

Total number of orbits (including the orbits not shown) = 191 

     In these Tables, the first column represents the order 

of multiple scattering V which ranges from 1 to mn 

,while V in the second column represents the serial 

index used to number the orbits of order V.  The third 

column represents the length of the orbit T (V, V).  In 

the fourth column the mn - digit binary numbers give 

the - matrices of the group 𝐺 = 𝑆𝑚 ⊗ 𝑆𝑛.  The first 

n-digits are the elements Δ1i, i = 1,2,..,n; the next n 

digits are Δ2i, …., and the last n-digits are mi.   By 

symmetry, the orbits, lengths and - matrices for V's 

which are not shown in the Tables could be easily 

deduced from the Tables.  This is carried out using the 

results for order V' = mn - V and interchange the 0’s 

and 1’s of Δ (V', V'). The indices V and V  are the 

same and the lengths T (V', V’) and T (V', V') are 

equal.  The matrix Δ (mn, 1) has elements ij equal 1. 
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