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The three-body force (3BF) has been used to modify the two body forces to achieve the empirical 

saturation points as well as study the ground state properties for symmetric nuclear matter using the 

Brueckner-Hartree-Fock approximation (BHF) with the Argonne AV18 potential at zero and finite 

temperature. Moreover, the energy per nucleon (   ) as a function of nuclear density   is calculated. 

Furthermore, the correction of the two-body dependent potential (correction 1) is added to shift and 

improve the saturation properties of the nuclear matter    from 0.265      to 0.149      at     = -

16.142 MeV towards to the empirical saturation point    = 0.16     . Additionally, the pressure   for 

symmetric nuclear matter for zero-temperature  = 0 as a function of density      using the Argonne 

AV18 potential is calculated revealing a good agreement between our calculations and the experimental 

data. On other hand, more calculations for the pressure are added at different energies  = 4, 8, 12, 18 

and 20 MeV. Also, the level-density parameter as a function of density   is calculated for the BHF 

approach. Moreover, the internal energy   for the symmetric nuclear matter as a function of 

density   using the Argonne AV18 potential for continuous choice at  = 4, 8, 12, 18 and 20 MeV for the 

BHF with and without 3BF is calculated. 
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Introduction 

One of the big challenge in theoretical nuclear 

physics is the attempt to found the basic 

characteristics of nuclear systems to describe the 

realistic nucleon-nucleon interaction. The 

procedure of this attempt can typically be derived 

in two steps, in the first one, a model is deuteron. 

In the second step, the many-body problem of the 

interacting nucleons using a realistic nucleon-

nucleon interaction needs to be solved. The 

simplest solution of this many chosen within 

which the pure nucleon-nucleon interaction is 

described which leading one to be guided by 

quantum chromodynamics [1]. Also, using an 

input Boson exchange model. i.e. a meson 

exchange model [2] and this leads to a microscopic 

description of the nucleon-nucleon interaction. On 

the other hand, a purely phenomenological 

approach, where two-particle spin isospin 

operators are used, each particle is multiplied by a 

local potential used such the Argonne AV18 

potential [3]. All these models will be considered 

as a realistic description of nucleon-nucleon 

interaction by appropriate choice of model 

parameters, the nucleon-nucleon scattering phases 

for energies below the bion threshold are 

described. In addition, such realistic potentials also 

reproduce energy and other observables of the 

deuteron. 

In the second step, the many-body problem of the 

interacting nucleons using a realistic nucleon-

nucleon interaction needs to be solved. The 

simplest solution of this many-body problem is the 

Hartree-Fock approximation, in this approximation 

one can determine very well the ground state 

properties of the nuclei as well as its internal 

structure [4]. 
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As long as one uses phenomenological potentials 

which have two or few adjustable parameters 

which are determined by fitting the empirical 

saturation density and energy of the cold 

symmetric nuclear matter in the BHF calculations 

[5], theses potentials are, however, unable to 

describe very well the data of nucleon-nucleon 

scattering. Such potentials are thus not realistic 

potentials designated. On the other hand, using the 

Haetree-Fock approximation with realistic 

potentials is completely inadequate, it leads to 

unbound systems [6]. The failure of the Hartree-

Fock approximation has led to the development of 

a variety of techniques for correlation effects 

beyond the pure Hartree-Fock approximation, to be 

considered. These include, for example, the 

Brueckner development [7 and 8], the coupled 

cluster exponential S method [10 and 11], self-

consistent calculation by using the green functions 

[12], variational method by using correlated basic 

functions [13 and 14] as well as recent 

development by using quantum Monte-Carlo 

techniques [15 and 16]. However, in addition to 

correlation effects, it is obvious that a relativistic 

treatment of the many-body problem is a necessary 

to improve the description of the ground state 

properties of nuclear systems. 

The nuclear equation of state (EOS) is a very 

important tool to interpret the nucleus-nucleus 

collision.  To establish the EOS it needs mainly 

two tools, the first is the nuclear force model such 

as non-relativistic potential model, relativistic 

mean field model or finite-range Thomas Fermi 

model. And the second one is a numerical 

technique, we might choose liquid droplet 

approach, Thomas Fermi approximation or BHF 

approximation. The two tools can be merged to 

establish the equation of state.  In case of 

experimental studies of the equation of state, one 

of the main motivations of study of nuclear 

collisions in the range of relativistic energies is the 

experimental determination of the equation of state 

of symmetric nuclear matter. The first exploration 

of this range was at the BEVALAC via 

bombarding energies of about 0.2 till 2 

GeV/nucleon, some models like Hydrodynamical 

and cascade models predict the existence of a 

compression phase and the total density reaches to 

2-3 times nuclear density for incident energies of 

0.5 till 1 GeV/nucleon [16, 17], the temperature of 

this system during this phase can be become as 

high as 50-100 MeV [16]. 

The equilibrium density of the ideal symmetric 

nuclear matter found to be     0.17 nucleons/fm
3
 

which corresponds to the energy per nucleon     

= -16 MeV [7], where   represents the saturation 

density and     represents the saturation energy. 

For discussing the ground state properties of 

nuclear matter we have used the most realistic 

nucleon-nucleon force Argonne AV18 [3]. 

Besides, it is constructed by a set of two-body 

operators, which arise naturally in meson exchange 

processes, its form factor are partly 

phenomenological except the one-pion exchange. 

In the present work, the energy per nucleon as a 

function of the density     and the  pressure   are 

computed by using the Argonne AV18 potential 

[3], in the frame work of BHF approach added to 

density term eq.(9) compared with the eight terms 

with different powers of the densities [17], the 

saturation density of nuclear matter is found      

20 fm
-3 

and its saturation energy per nucleon      

= -16 MeV. Also the pressure of symmetric nuclear 

matter   at    4, 8, 12, 18 and 20 MeV have been 

calculated by using    approximation [16]. The 

second part of this work the BHF as well as the 

Beth-Goldstone equation were investigated. The 

third part shows the theoretical results comparing 

with the available experimental data. Conclusion is 

given in section 4.  

 

The theoretical model 

The Brueckner-Hartree-Fock approximation 

depends on the BGE for the ground state energy, 

the time-dependent Hamiltonian operator of a 

system consists of   identical nucleons can be split 

as the following: 

 

 ̂   ∑      
 
   ∑    

 
        ̂   ̂                (1) 

 

Where the first term denotes the sum over the 

kinetic energy of all particles, the second term 

represents the sum over the two-particles 

interaction for a realistic nucleon-nucleon 

interaction. The splitting of the Hamiltonian 

operator  ̂ into the two parts    and   takes place 

according to: 

 

 ̂   ∑ (      )
 
                                               

(2) 

 ̂   ∑    
 
     ∑   

 
                                         (3) 

 

Where the single particle potential    ∑  . 
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The Brueckner-Bethe-Goldstone (BBG) equation 

of the interaction between two nucleons can be 

described via the G matrix: 

     
 

       
                                          (4) 

 

 

Where   denotes the nucleon-nucleon interaction, 

  is infinitesimal small number and   is the 

starting energy which represents the sum of the 

single particle energy of the interacting nucleons 

and it can be written as: 

   ( )   ( ́)                                             (5) 

And the single particle energy  ( ) can be written 

as: 

 

 ( )    
  

  
  ∑ 〈  | (    

       
   

 
)|   〉     

(6)         

Where   denotes an anti-symmetrization of the 

matrix elements, and   denotes the Pauli operator 

which can be written as [18]: 

 
 
〈(  ̀ ) ̀| (   )|(  )〉  

∑ ⟨      |   ⟩⟨ ̀  | ̀     ⟩    
⟨ ̀  | (   )|   ⟩                                       

         (7) 

Via the BHF approach from eq. (6) we can 

evaluate the binding energy per nucleon as: 

 

 
 
 

 

  
 

  
 

 

  
  ∑ ⟨  ́| ( ( )   ( ))́ |  ́⟩

     ́
 

(8)  

Where    is the Fermi momentum. 

In order to study the properties of nuclei and 

nuclear matter, two-body density dependent 

potentials have been used. 

The second one is the Mansour three body force 

(correction 2) is defined as [19]: 

 (   ⃗⃗⃗⃗    ⃗⃗  ⃗)   ∑   (      ) 
   

    (  ⃗⃗⃗     ⃗⃗  ⃗)    (9) 

 

Where    and    are the positions vectors of the 

nucleon (1) and nucleon (2) respectively, and 

   (
 

 
 
 

 
 
 

 
  and  ) ,  this correction has been 

studied previously [20,21,22,23 and 24],    and    
represent the parameters of the interaction,    is 

the spin exchange operator and   is the density, the 

four values of    listed in [25], in addition, we 

have obtained these values via fitting the 

experimental symmetry energy as well as the 

values of   . 
The first correction (correction 1) [25] is calculated 

from the following equation: 

 

 
  

 

 
      

 

  
    

                                       (10) 

 

 

The values of the two parameters    and    are 

adjusted to reproduce the biding energy per 

nucleon (   ) and the saturation density of 

nuclear matter    where    = -325.902      and 

   = 4837.6       and   represents a fixed 

parameter (typically,      ). 

 
Results and discussion 

The energy per nucleon     in MeV as a function 

of density for symmetric nuclear matter is shown 

in Figure (1). Besides, we have used the 

Brueckner-Hartree-Fock approximation in the 

calculations with and without the contribution of 

the 3BF. The calculations have been performed 

using the Argonne AV18 potential [3]. It's obvious 

that, there are substantial region in which the slope 

of the energy per nucleon (   ) is negative at low 

densities, then the (   ) should increase as density 

increases.  The results of BHF using the Argonne 

AV18 potential are plotted as solid curve. In 

addition, the 3BF of the same calculations are 

plotted as dashed curve. The correction 1 which 

added to the results of BHF plotted is shown as 

dotted curve and the Mansour’s body force 

correction with the BHF values is plotted with 

solid-dashed curve. 

It's obvious from Figure (1) that the contributions 

of the corr.(1) from [25] when added to the values 

of the BHF participate to improve the saturation 

point to become             
   at      -

16.142 MeV close to the empirical one    
          at          MeV. In case of 

comparing the results of Mansour three body force 

correction  [17 and 19] and the results of corr.1 Of 

[25] using the same potential AV18, we have 

found that the Mansour three body force correction 

is very close to the calculations of the 3BF.   
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Figure (1) The binding energy per nucleon     as a 

function of density symmetric nuclear matter    for two-

body forces BHF (solid curve), the 3BF (dashed curve), 

corr. 1 (dotted curve) and corr. 2 (solid-dashed curve) with 

Argonne AV18 potential 

 

The reason for this comes from the number of the 

parameters in each correction, for corr. 1 we have 

used only two parameters,    = -325.902      
and      4837.6      . While in Mansour three 

body force (corr. 2) more parameters have been 

added in eq.(9) for choosing    (
 

 
 
 

 
 
 

 
  and  ) 

then fitting the parameters    and   , the results of 

these fitting parameters are listed in table 1 in [16].  
We have calculated the pressure   as a function of 

density for symmetric nuclear matter at    0 

from the following formula: 

 ( )      
 (   )( )

  
           (12) 

Figure (2) shows the results of pressure with four 

calculations, The results of BHF using the 

Argonne AV18 potential are plotted as solid curve, 

the 3BF of the same calculations are plotted as 

dashed curve, the corr.(1) which is added to the 

results of BHF is plotted as dotted curve and the 

corr.(2) with the BHF values is plotted with solid-

dashed curve. 

 

 

 

 
Figure (2) The pressure   for symmetric nuclear matter 

for zero-temperature     as a function of density      
using the Argonne AV18 potential, the results are 

compared with the experimental data from [27] 

 

It's obvious that, the pressure should increase as 

the density of symmetric nuclear matter increases, 

also, we have found that the discrepancies between 

all calculations with or without the contributions of 

the two corrections are negligible specially at low 

densities but at high densities, these discrepancies 

will be noticeable, in case of comparison with the 

available experimental data we have found that the 

3BF and the corr. (2) very close to the 

experimental data. 

Figures (3, 4, 5, 6 and 7) show the calculations of 

the pressure   at different temperatures    4, 8, 

12, 18 and 20 MeV, we have used the    

approximation [17] to carry out the following 

formula: 

          
  

 
 
   

  
 (
   

 
)
   

                   (13) 

We can see from the Figures (3, 4, 5, 6, 7 and 8) 

that the pressure as a function of density nuclear 

matter   decreases by increasing the   then 

increases by increasing the density. 

In the present paper, we have used two methods in 

order to calculate the thermodynamics properties 

of the ground state 
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Figure (3) same as Figure (2), but for    4 

Figure (4) The same as Figure 2, but for    8 

 

of the symmetric nuclear matte. The first method 

depends on the calculations of the G-matrix 

elements   with     0 and the second 

.               
Figure (5) same as Figure 2, but for    12 

Figure (6) same as Figure 2, but for    18 
method based on the internal energy of the system 

  which is defined as 

                                                         (14) 

 Where   represents the energy per nucleon (   ) 

at    0, this internal energy is calculated using 

the effective mass m* and the entropy of the 

system    as a function of temperature  . At low 

temperatures           
  and       , 

where   represents the level-density parameter 

introduced as a function of density [17], it can be 

defined by: 

 ( )   (
   ( )

  
) (

   

 
)

 

 
                            (15) 

Then the internal energy can be written by 

 

Figure (7) The same as Figure 2, but for    20 

                ( )             (16) 

From equations (15) and (16) we get: 

         
  

 
 (
   ( )

  
) (

   

 
)

 

 
             (17) 

It’s convenient to mention that in case of zero-

range forces we can use the same expressions [26]. 

Figure (8) shows the level-density parameter   as a 

function of the density   for the Argonne AV18 

potential [3] with the 3BF and the two added 
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corrections. It is clear that the level-density 

parameter decreases by increasing the density  . 

In Figures (9,10,11,12 and 13) we have plotted the 

internal energy   for symmetric nuclear matter in 

MeV as a function of density   at different 

temperatures    4, 8, 12, 18 and 20 MeV. The 

curves represent the BHF approach using the 

Argonne AV18 potential [3] with 3BF and the two 

added corrections. We can observe from these 

figures that the internal energy decreases at low 

densities then it increases by increasing the density 

 . For more details, one can see more attempts for 

studying the BHF calculations at finite 

temperatures in [27,28,29 and 30]. 

Figure (8) The level-density parameter   for the BHF 

calculations as a function of the density using the Argonne 

AV18 potential 

Figure (9) The internal energy for symmetric nuclear 

matter as a function of density using the Argonne AV18 

potential for continuous choice at    4  for two-body 

forces BHF (solid curve), the 3BF (dashed curve), corr. 1 

(dotted curve) and corr. 2 (sold-dashed curve) 

Figure (10) same as Figure 9, but for    8 

Figure (11) same as Figure (9), but for    12 

Figure (12) same as Figure (9), but for    18 
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Figure (13) same as Figure 9, but for    20 

 

Conclusions 

 It’s important to study the three-body force to 

modulate the two-body forces to achieve the 

empirical saturation points as well as study the 

ground state properties of the symmetric nuclear 

matter at zero and finite temperature. The main 

goal in the present work is to calculate the 

correction parameters [25] and add its results to the 

results of the two-body force to achieve the 3BF 

results. Also, comparing our results for the BHF 

approach with Mansour three body force 

correction [17 and 19] to study the properties of 

the symmetric nuclear matter at zero and finite 

temperature by using the same nucleon-nucleon 

interaction Argonne AV18 potential [3]. In case of 

comparing the results of the two corrections, we 

have found that the results of Mansour three body 

force (corr.2) is very close more than (corr.1) to 

the calculations of the 3BF, this is as a result of the 

number of parameters in each correction. In the 

corr.1 two parameters    an    are used while in 

Mansour three body force correction eight 

parameters were added to eq.(9). 
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